
 
Supplementary Figure 1 

Decoding results broken down for different ROIs 

Decoding results for areas V1, V2, V3, and V1–V3 combined. (a) Decoded and presented orientations are 
strongly correlated in areas V1–V3 from a representative observer (r = 0.74, p ≈ 0). (b) Similar results were 
found across observers. That is, decoding performance, plotted as the across-subject mean of the correlation 
between actual and decoded orientations, was highly significant in areas V1, V2, V3, and V1–V3 combined (all 
p ≈ 0). (c) Posterior width reliably predicted the variability in decoded orientations in all visual ROIs (V1: p = 

0.2×10–15; for each of V2, V3 and V1–V3 combined: p ≈ 0). (d) The posterior distribution is reliably broader for 
more oblique orientations in areas V1 (p = 0.003), V2 (p = 0.011), V3 (p = 0.003) and V1–V3 combined (p = 
0.008, see also Fig. 1b, main text). (e) Posterior width reliably predicts the trial-by-trial variability in behavioral 
orientation estimates in visual areas V1 (p = 0.003) and V1–V3 combined (p = 0.021; see also Fig. 1c, main 
text), with a trend towards significance in area V2 (p = 0.09). (f) The strength of the behavioral bias away from 
the cardinal axes is significantly correlated with posterior width in areas V1 (p = 0.002), V2 (p = 0.005), V3 (p = 
0.030) and V1–V3 combined (p = 0.017, see also Fig. 1d, main text), with smaller behavioral biases for 
decreasing decoded uncertainty. In all plots, error bars represent +/– 1 SE. 
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Supplementary Figure 2 

Comparison of different noise models 

Comparison across different noise models. We considered four different covariance structures for the model 
described by equation 6. The first covariance structure was defined as: 

𝛀𝛀1 = 𝐈𝐈 ∘ 𝛕𝛕𝛕𝛕T  

where τ is a vector that models the standard deviation of each voxel’s Gaussian variability. The second 
covariance structure was specified by: 

𝛀𝛀2 = 𝜌𝜌𝛕𝛕𝛕𝛕T + (1 − 𝜌𝜌)𝐈𝐈 ∘ 𝛕𝛕𝛕𝛕T 

where ρ models variability shared globally across voxels, irrespective of their tuning preference. The third noise 
structure that we considered was defined as: 

𝛀𝛀3 = 𝜌𝜌𝛕𝛕𝛕𝛕T + (1 − 𝜌𝜌)𝐈𝐈 ∘ 𝛕𝛕𝛕𝛕T + 𝜎𝜎2𝐖𝐖𝐖𝐖T  

where σ2 specifies the variance of independent and identically normally distributed noise shared across neural 
populations of similar orientation preference. The final noise model additionally described local correlations 
between voxels due to the BOLD point spread function (PSF; see e.g. Parkes et al., Magn. Reson. Med., 
2005): 

𝛀𝛀4 = 𝛼𝛼 exp(−𝛽𝛽𝐃𝐃) ∘ 𝛕𝛕𝛕𝛕T + 𝜌𝜌𝛕𝛕𝛕𝛕T + (1 − 𝜌𝜌 − 𝑎𝑎)𝐈𝐈 ∘ 𝛕𝛕𝛕𝛕T + 𝜎𝜎2𝐖𝐖𝐖𝐖T  
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This noise model assumed that the degree of shared variability due to the PSF decays exponentially with 
distance, with initial amplitude α and decay rate controlled by β, and where matrix D describes, for each pair of 
voxels, the absolute distance in millimeters between their center coordinates. 

Model parameters were estimated using the fMRI data in a leave-one-run-out cross-validation 
procedure, using the two-step training procedure as described in Methods. After fitting each model to the 
training data set, we used the held-out testing data set to evaluate its performance on two relevant benchmark 
tests. (a) We first focused on each model’s ability to identify the presented orientation from BOLD activity in 
areas V1–V3. Orientation decoding performance, quantified as the circular correlation coefficient between the 
decoded and presented stimulus orientation, was significantly better for models 2 and 3 than for models 1 and 
4 (pairwise Z-tests; 2 vs. 1: Z = 9.11, p ≈ 0; 2 vs. 4: Z = 9.18, p = 1.2×10–10; 3 vs. 1: Z = 9.85, p ≈ 0; 3 vs. 4: Z = 

9.92, p = 3.4×10–12). We found no reliable difference in orientation decoding performance between models 2 

and 3 (Z = 0.74, p = 0.46). (b) We then evaluated each model’s ability to characterize the degree of uncertainty 
about orientation. To the extent that the decoded posterior distribution appropriately models the covariance in 
fMRI data, broader distributions should be linked to increased variability in the decoder’s estimates of the 
presented orientation. Accordingly, we divided each participant’s data into four bins of increasing posterior 
width, calculated the across-trial variability in the decoder’s orientation estimates for each of the bins, and 
computed the partial correlation coefficient between mean posterior width and variability in decoded 
orientations (while regressing out between-subject variability). Interestingly, only models 2–4 successfully 
characterized a sufficient degree of uncertainty in the fMRI data (model 1: t(53) = –0.25, p = 0.81, model 2: 
t(53) = 2.11, p = 0.04; model 3: t(53) = 15.91,  p ≈ 0; model 4: t(53) = 9.85, p = 1.4×10–13). Furthermore, model 
3 reliably outperformed models 2 and 4 on this test (pairwise Z-tests on correlation coefficients; Z = 6.31, p = 
2.8×10–10 and Z = 2.10, p = 0.035, respectively). Taking both benchmark tests together, these results indicate 
that the third model best captured the noise covariance in BOLD activity relevant to orientation decoding. 
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Supplementary Figure 3 

Correlation between decoder errors and behavioral errors 

Correlation between errors in decoded orientation estimates and errors in behavioral orientation reports, with 
error bars corresponding to +/– 1 SE. For each participant, trials were sorted into four bins of increasing signed 
or absolute decoder error. Within each bin, we calculated both the mean error (signed or absolute) in decoded 
orientation and the mean behavioral error (signed or absolute). We then used a multiple linear regression 
analysis to compute partial correlations between decoder and behavioral errors, controlling for mean 
differences between observers. Signed decoder errors were not significantly correlated with signed behavioral 
errors (t(53) = 1.42, p = 0.16), nor were larger decoder errors reliably associated with larger behavioral errors 
(t(53) = 0.91, p = 0.12) in areas V1–V3. Why do we nevertheless find that the variance of the posterior 
distribution is linked to behavioral biases and across-trial variability in behavioral errors? To see why, consider 
that the errors themselves are two independent random variables. As such, the correlation between the errors 
must necessarily be relatively weak, even when the mean and variance of their underlying distributions are 
linked. This observation exemplifies the utility of our uncertainty metric, which directly reflects the variance of 
the underlying distributions. 
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Supplementary Figure 4 

Correlation between the estimated neural population response and behavioral variability 

Estimating the neural population response. Does a channel-based approach (cf. [13,14]) similarly reflect the degree 
of uncertainty about orientation? It is important to realize that the posterior probability distribution characterizes 
the amount of information contained in the pattern of BOLD responses, rather than providing a direct estimate 
of the neural population response. That said, our model does allow for the estimation of neural population 
responses at a single trial level. Specifically, the population response c is described as the (idealized) tuning 
curves of the population plus noise (cf. equation 1):  

𝐜𝐜 = 𝒇𝒇(𝑠𝑠) + 𝛈𝛈 

Thus, estimating c involves finding the most likely value for η by maximizing the joint likelihood 

𝑝𝑝�𝐛𝐛�𝑠𝑠,𝛈𝛈;𝐖𝐖� , 𝛕𝛕�,𝜌𝜌��𝑝𝑝(𝛈𝛈|𝜎𝜎�). Differentiating this likelihood with respect to η gives the following expression for the 

maximum likelihood estimate (MLE):  

𝛈𝛈� = 𝜎𝜎�2𝐖𝐖� T𝛀𝛀�−1 �𝐛𝐛 −𝐖𝐖�𝒇𝒇(𝑠𝑠)� 

With these equations in hand, we first computed for each independent test trial the most likely neural 
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population response �̂�𝐜. We then calculated the dispersion (circular standard deviation across channels) of the 
estimated neural population response, as well as the amplitude of the channel most strongly tuned to the 
presented stimulus orientation. Trials were subsequently sorted into four bins of increasing dispersion or peak 
response amplitude value. Summary statistics (mean dispersion, mean peak amplitude, and behavioral 
variability) were computed across all trials in each bin. Multiple regression analysis was used to compute 
partial correlation coefficients between dispersion and behavioral variability, as well as between peak 
amplitude and behavioral variability (regressing out distance to cardinal axes and between-subject variability). 
Interestingly, neither the dispersion, nor the peak amplitude, of the estimated population response reliably 
predicted behavioral variability (r = –0.05, p = 0.73 and r = –0.16, p = 0.25, respectively; in the figure, error bars 
indicate +/– 1 SE).  

Why is the estimated neural population response a less reliable predictor of behavior than the posterior 
probability distribution? One reason may be that the posterior distribution combines many aspects of the 
population response in a single information metric. As such, the posterior distribution is more sensitive to 
changes in orientation information than any one property of the neural population response alone. It is also 
important to realize that �̂�𝐜 reflects the most likely neural population response (i.e., a single estimate). BOLD 
activity, however, is rather noisy and typically consistent with a whole range of neural population responses. 
The posterior distribution explicitly reflects this full range of possibilities, thereby providing greater sensitivity to 
subtle changes in BOLD activity.  
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Supplementary Figure 5 

Control analyses for mean BOLD, head motion and eye movements 

Control analyses. Partial correlation coefficients between decoded uncertainty and mean BOLD signal 
intensity, head motion, eye position and eye movements. We found no significant correlation between decoded 
uncertainty and any of these variables in areas V1–V3 (p = 0.16, p = 0.55, p = 0.27 and p = 0.20, respectively), 
indicating that gross BOLD amplitude, mean eye position (amount of) eye movements, and (amount of) subject 
head motion cannot account for the trial-by-trial uncertainty in cortical stimulus representations. This 
furthermore rules out simple explanations in terms of the amount of attentional effort put into the task, as 
overall BOLD amplitude tends to increase with effort (Ress, Backus & Heeger, Nat Neurosci., 2000). Error bars 
represent +/– 1 SE. 
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Supplementary Figure 6 

Bias in orientation reports as a function of stimulus orientation 

Behavioral orientation reports are biased away from the nearest cardinal axis. Plots show the average (signed) 
error across observers in the behavioral orientation judgments, as a function of stimulus orientation. Positive 
errors indicate clockwise deviations from the veridical stimulus orientation. For each observer, trials were 
binned based on stimulus orientation, and the average behavioral error was calculated within each bin. Error 
bars indicate +/– 1 SEM. 
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Supplementary Figure 7 

Effect of number of voxels on main results 

Decoding results as a function of number of voxels included within the ROI. Within areas V1–V3, all voxels 
whose response to the localizer stimulus met a chosen threshold (x-axis, uncorrected p-values) were selected 
for subsequent analysis. Shown is the correlation between (a) decoded and actual stimulus orientation 
(decoding performance), (b) decoded uncertainty and angle between stimulus orientation and nearest cardinal 
axis (oblique effect in decoded uncertainty), (c) decoded uncertainty and behavioral variability and (d) decoded 
uncertainty and behavioral bias. Error bars represent +/– 1 SE. All of these results proved robust to reasonable 
variations in the number of voxels included in the analysis. 
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Supplementary Figure 8 

Hemodynamic response function and decoding window 

Hemodynamic response function and decoding window. (a) Time course of mean BOLD activity in areas V1–
V3 over the course of a trial. Time points between 4–8 s were averaged for subsequent decoding analysis. 
This relatively short time window (4 s) was chosen in order to ensure that activity from the response window 
was excluded from analysis. (b) Temporally expanding the time window to 2–8s did not greatly affect any of 
our results (p = 0.004, p = 0.022 and p = 0.007, respectively). Error bars correspond to +/– 1 SE. 
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Supplementary Figure 9 

Simulation results supporting the two-step model parameter estimation procedure 

Estimation of W conditioned on the assumption that σ = 0. We simulated data according to the generative 
model described by equation 6, with ρ = 0.05, σ = 0.3, and 𝛕𝛕~𝒩𝒩(0.7, 0.0352) for five different (hypothetical) 
observers. These parameter values were based on actual values estimated from 18 real observers. Similarly, 
W was simulated (independently for each observer) by sampling at random from a weight matrix that was 
estimated from the data of one of the participants to ensure a realistic distribution of orientation tuning across 
simulated voxels. Each simulated pattern of BOLD activity contained information about stimulus orientation, 
with varying degrees of uncertainty due to noise. To assess trial-by-trial uncertainty, we computed, for each 
trial of simulated data, the probability distribution over stimulus orientation given the parameters of the 
generative model (i.e. 𝑝𝑝(𝑠𝑠|𝐛𝐛;𝐖𝐖,𝜌𝜌, 𝛕𝛕,𝜎𝜎)). We took the circular standard deviation of this distribution as the actual 
degree of uncertainty in the data. We then asked how well our decoder would recover this uncertainty, having 
estimated the model parameters from the simulated BOLD patterns using the two-step procedure described in 
Methods. Panel (a) plots decoded uncertainty against the actual degree of uncertainty in the data. While the 
decoder is slightly biased towards smaller values of uncertainty (slope = 0.53), the correlation between actual 
and decoded uncertainty is reasonable (r = 0.79, p = 6.0×10–15). (b) The simulations were repeated for a range 
of parameter values (σ and τ), in semi-octave steps around the empirical values used in a (red cross). 
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Decoded uncertainty becomes less accurate with larger degrees of noise (larger σ and τ), as more noisy data 
generally results in poorer parameter estimates. Overall, for realistic levels of noise, decoded uncertainty 
correlates well with the actual degree of uncertainty in the data. (c) To assess whether our approach is 
sensitive to fluctuations in neural response in particular, we additionally computed the uncertainty about 
orientation in the simulated data given only neural variability modeled by σ. Specifically, we computed for each 
trial of simulated data the posterior probability distribution 𝑝𝑝(𝑠𝑠|𝐜𝐜;𝜎𝜎), where 𝐜𝐜 = 𝒇𝒇(𝑠𝑠) + 𝛈𝛈 (cf. equation 1) and σ = 
0.3. The circular standard deviation of this distribution served as the actual degree of uncertainty given the 
neural response alone. Interestingly, the correlation between decoded uncertainty and actual uncertainty 
reduced only slightly, suggesting that τ and ρ contribute little to overall uncertainty. To see why τ and ρ have a 
relatively small influence on decoded uncertainty, consider that the noise modeled by sigma is positively 
correlated with changes in signal (tuning curves) – such signal-dependent noise has the greatest impact on 
information (Smith & Kohn, J. Neurosci., 2008; Abbot & Dayan, Neural Comput., 1999; Averbeck, Latham & 
Pouget, Nat. Rev. Neurosci., 2006). In contrast, ρ is unrelated to voxel tuning, while the sources of noise 
modeled by τ can, to large extent, be averaged out across voxels. Altogether, these simulations confirm that 
our two-step parameter estimation approach captures a sufficient degree of uncertainty in the data. 
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Supplementary Figure 10 

Noise model parameter estimates 

Noise model parameter estimates obtained from the fMRI data. (a) Distributions across subjects of the mean 
estimated values for ρ and σ (averaged across all training partitions of the data), shown as box plots. Boxes 
extend from the first to the third quartiles, with notches at the medians. Whiskers span the full range of the data 
except for outliers, which were defined as values deviating from the median by more than 1.5 times the inter-
quartile range, and are shown separately as open circles. (b) Since τ contained a value for each voxel, we plot 
its estimates separately, showing the distribution of values across voxels within each participant. For clarity of 
exposition, no outliers are shown here (due to the large number of data). Otherwise, this panel follows the 
same conventions as in a. 
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Supplementary Table 1: Clarification of variables 

M number of voxels  

K number of hypothetical neural populations 

i, k indexes of voxels and neural populations, respectively 

b an M x 1 vector {bi} of voxel responses 

W  an M x K matrix {Wik}, containing for each voxel i the contribution of each neural 

population k to that voxel’s orientation tuning function 

s stimulus orientation in degrees 

fk(s) the orientation tuning function of the kth neural population 

k noise in the response of the kth neural population 

c the neural population response; a K x 1 vector such that c = f(s) +  

i noise in the response of the ith voxel 

 an M x M covariance matrix for the multivariate normal distribution of  

 an M x M covariance matrix for the multivariate normal distribution of ( + W) 

 an M x 1 vector, where i
2 is the marginal variance of i 

 global noise correlation between all voxels 

2 variance of independent noise in neural populations tuned to the same orientation  

,  amplitude and space constant (respectively) of an exponential decay function specifying 

correlations between neighboring voxels as a function of spatial separation (see 

Supplementary Fig. 2) 
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