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Model Hierarchies and Other
Strategies to Bridge the Gap
Between Behavior and the Brain
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Computational modeling of the brain holds great promise as a bridge from brain to
behavior. To fulfill this promise, however, it is not enough for models to be ‘biologically
plausible’: models must be structurally accurate. Here, we analyze what this entails for
so-called psychobiological models, models that address behavior as well as brain function
in some detail. Structural accuracy may be supported by (1) a model’s a priori
plausibility, which comes from a reliance on evidence-based assumptions, (2) fitting
existing data, and (3) the derivation of new predictions. All three sources of support
require modelers to be explicit about the ontology of the model, and require the existence
of data constraining the modeling. For situations in which such data are only sparsely
available, we suggest a new approach. If several models are constructed that together
form a hierarchy of models, higher-level models can be constrained by lower-level models,
and low-level models can be constrained by behavioral features of the higher-level
models. Modeling the same substrate at different levels of representation, as proposed
here, thus has benefits that exceed the merits of each model in the hierarchy on its own.

Keywords: Brain, Behavior; Computational Modeling; Hippocampus; Neural Networks;
Vision

1. Introduction

Most psychologists and neuroscientists agree that the brain produces behavior, and
that ultimate theories of behavior will be ones that spell out the link between the two.
One type of research that can function as a bridge between brain and behavior is
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7 computational modeling of the brain. In the ideal case, models incorporate brain
anatomy and physiology, and show us how humans or animals solve tasks. Such
models can then generate predictions on both the physiological level and the
behavioral level. In practice, however, a majority of computational models still focus
on one or the other. In neurobiological models, behavior is often modeled—if at
all—in a very abstract way, precluding behaviorally testable predictions. In
psychological models, the connection to real brain processes is often so thin as to
become irrelevant. This state of affairs is not surprising. A ‘mindbrain’ model, one
that is both adequate at the biological plane and specific about behavior, must work
at levels with widely different temporal and spatial scales. It must do justice to
neurons that take up about 9! 10"18 liters and spike in less than a millisecond, but
also to behavioral tasks that involve the whole brain (#1.3 liters) and take seconds to
minutes or more (Anderson, 2002; Murre & Sturdy, 1995).
In recent years, however, more and more models have been proposed that are

intermediate, being neither purely functional nor tied with much precision to brain
anatomy (e.g., Bogacz, Brown, & Giraud-Carrier, 2001; Botvinick, Braver, Barch,
Carter, & Cohen, 2001; Deco & Rolls, 2002; Gluck & Myers, 1993; Grossberg, 2001;
Hasselmo, 1995a; Jensen, Idiart, & Lisman, 1996; Lengyel, Kwag, Paulsen, & Dayan,
2005; Li, 2003; Meeter & Murre, 2004; Murre, 1996; Norman & O’Reilly, 2003;
Petrov, Dosher, & Lu, 2005; Polsky, Mel, & Schiller, 2004; Raffone & Wolters, 2002;
Rao, Zelinsky, Hayhoe, & Ballard, 2002; Usher & Niebur, 1996; van der Velde &
de Kamps, 2001). They typically take inspiration from brain anatomy to model a
particular set of behavioral data, or a particular psychological function. For such
models, we will use the term psychobiological models. Some of these models have
generated much enthusiasm, as they hold great promise as a bridge from the brain to
behavior.
Psychobiological modeling can have several goals. A model can be presented as

only one of many possible instantiations of a verbal theory. The goal of the modeler is
then to show that the model produces the theorized behavior, as an existence proof
that the mechanisms in the verbal theory can work as proposed (e.g., Nadel,
Samsonovitch, Ryan, & Moscovitch, 2000; Xing & Andersen, 2000). Sometimes,
models are said to uncover computational limitations and tradeoffs, making
it possible to derive general principles that are applicable to the brain’s computations
(McClelland, McNaughton, & O’Reilly, 1995; Ringo, Doty, Demeter, & Simard,
1994), or they make statements about the computations that a certain brain area can
perform (Treves & Rolls, 1994). A goal of modeling may also be to structure data and
tease apart components that underlie superficial effects in the data (e.g., modeling
retention to uncover differences in forgetting rates, Meeter, Murre, & Janssen, 2005;
Rubin & Wenzel, 1996). Most often, however, the aim of the modeler is to explain
existing findings and predict new ones.
There are two ways in which ‘explaining of findings’ can be understood. A classic

interpretation of theorizing in general is that a theory summarizes and systematizes
observations, allowing covering laws to be extracted from the data (Hempel, 1965).
This is not the view of most modelers, who usually have the pretension that their
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7 model corresponds to something in reality. They will claim for their model what
Webb (2001) has called structural accuracy. Structural accuracy refers to how well
the model represents the real mechanisms underlying the target behavior. If a
model is structurally accurate, it does not reproduce the target data only because it
incorporates a covering law, it does so because the mechanism producing model
behavior is equivalent to that producing the data in the modeled substrate. Most
modelers will thus claim that their model reproduces the data in a structurally
accurate way.
‘Structurally accurate’ is a predicate similar to ‘true’: one can never be 100%

certain that a model is structurally accurate, but the structural accuracy of a model
can be supported. For a computational model, such support can take several forms.
Traditionally, models are judged on their ability to reproduce existing findings, and
by the predictions derived from the model that turn out to be true. As models of
behavior, psychobiological models are most often not up to standards set by formal
models. For example, few biologically-inspired network models of memory have
yielded quantitative predictions on memory experiments, something that had
already been achieved by functional, formal models developed in the seventies and
early eighties (e.g., Raaijmakers & Shiffrin, 1981). Many psychobiological models
are also published long before predictions they generate are proven correct.
According to traditional criteria, psychobiological models are thus not particularly
successful.
There are thus two traditional sources of model support, fitting data and making

predictions that turn out to be correct, and many psychobiological models do not
excell on them. Such deficiencies are often said to be compensated by a third virtue, a
high ‘biological plausibility’. This should make the model a priori plausible—which is
how we will refer to this third source of support for a model. This paper can be read
as an analysis of the claim of biological plausibility. We will first present a framework
to understand model structure, and use this to argue that for a model to be a priori
plausible, it must not so much contain many biological details, as much as not
contain assumptions that violate biological knowledge. Then we will argue that tying
the model to biology also makes it more testable, but only when the modelers are
specific on the ontology of their model.
There are cases in which too little data is available to constrain the model. As a

solution to this problem, we will propose a new approach to modeling: that of
constructing a model hierarchy. Such a hierarchy of complementary models may
optimize the way data are incorporated into the model, and could bridge the gap
between the seemingly unconnected levels of biology and psychology. Models in the
hierarchy can also constrain one-another, and pose restrictions on modeling where
behavior and physiology pose too few.
In a first part of this paper, we discuss the structure of computational models, and

the three sources of support for models mentioned above. In a second part, we argue
that considerations of model support suggest two strategies for building
psychobiological models: being sparse and mining biology. In a third part, we
discuss model hierarchies.

Philosophical Psychology 751
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7 2. Model Structure and Model Support

Computational modeling of the brain is the attempt to build a structure that is in
some way an abstraction of the brain. Characteristics of the functioning of this
abstract structure can then be derived or established through simulation. Usually,
such a simulation produces model behavior that can be compared to empirical data.
The term ‘model behavior’ should not be taken to imply that it can only be compared
to behavioral data. Behavior of neurons in a model can, for example, be compared to
behavior of recorded neurons in a modeled brain area.
The abstract structure of a model may be thought of as a collection of assumptions

that together specify a model. In an analytical, mathematical model, these
assumptions are the formulas used, the representation of the data that go into the
formulas, and parameter values. In neural networks, they may be the rules governing
the behavior of the nodes, the subdivisions of the network, the connection schemes
incorporated in the network, the number of nodes and other parameter values
(see Figure 1 for examples).
Some assumptions going into the model may be supported by evidence from the

brain and behavioral sciences. We will call these evidence-based assumptions. An
example in Figure 1 is the assumption in the third model that inhibition in a brain
area is a function both of the input to that area (feedforward inhibition), and the
neural activity within the area (feedback inhibition). Assumptions may also
concern unsupported ideas about brain or behavior. These assumptions, which
could possibly be true of the brain, we will refer to as ‘untested assumptions’.
Some of these may reflect the bold new theorizing of the modeler; we will refer to
these as ‘hypotheses’. An example in Figure 1 is the assumption, of the top
model, that memories are copied from one memory store to the next in
proportion to the number of copies in the previous store. Another untested
assumption could be the value of a free parameter; it could, in principle, be true
that the parameter or some counterpart in the brain has the chosen value, but it
has not been tested (if the value was backed up by data, it would be an evidence-
based assumption).
To build a working model, it is usually not enough to only abstract away from the

brain (in fact, if all mismatch with biology would refute a model, 99% of all models
would have to be rejected). Assumptions have to be added that do not model
anything in the brain and are not meant to be hypotheses about the brain, but that
allow the model to produce behavior. For example, in the second model in Figure 1,
all neurons in the hippocampus are assumed to be connected with one another
(known as the assumption of ‘full connectivity’). Few would call full connectivity
biologically plausible, but it features in many models as an easy way to overcome the
limitations of having vastly fewer neurons in the model than there are in the brain.
Other examples are hard winner-take-all dynamics (assuming that at any moment
only k neurons are firing), nonoverlapping input patterns (assuming that neurons
cannot be part of more than one input pattern), clamping of input patterns
(assuming that nothing changes to the activity in an input layer while the network

752 M. Meeter et al.
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7 computes an output), learning through backpropagation of error, and ‘empty brains’
(i.e., all connections at zero or random weights) at the outset of the simulation. Such
assumptions, which are in all likelihood counterfactual, we will refer to as ‘heuristic
assumptions’ (similar use of the term is found in economics, where demonstrably
false assumptions of rationality and full information are defended as heuristic
devices). Untested and heuristic assumptions together will be referred to as
‘unsupported hypotheses.’ Figure 2 gives more examples of each type of assumption
in one model of the hippocampus.

Figure 1. Examples of three psychobiological models and the behavior they produce.
(a) The Memory Chain Model (Murre, Meeter, & Chessa, 2007) is an abstract model of
the structure of models that can fit forgetting curves. The model structure consists of a set
of chained stores, from which memories (circles) are copied to further stores or are lost.
The example of model behavior is a quantitative fit of data from Frankland et al. (2001)
showing rapid forgetting in mice with a gene responsible for LTP knocked out in the
hippocampus. (b) The TraceLink model (Meeter & Murre, 2005; Murre, 1996) is a neural
network model of corticohippocampal interactions. Model behavior consists of
qualitative reproduction of patient data, shown here for the typical pattern seen in
retrograde amnesia, with preferential loss of recent memories after damage to the
hippocampus. (c) A low-level neural network model of the hippocampus (Meeter et al.,
2004), with as typical model behavior the activity produced in different subregions of the
hippocampus when a new memory is produced.

Philosophical Psychology 753
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We will use the analysis above to discuss three sources of support for models:
a priori plausibility, fitting data, and making predictions that turn out to be correct.
These sources are not specific to computational work; verbal theories are also
evaluated on how they explain data, on the fate of their predictions, and on how
plausible they are. Presenting a theory in the form of a computational model has
advantages over verbal theorizing, in that it makes hidden assumptions explicit, and
makes it easier to detect fudges, ad hoc assumptions, and inconsistencies between the
assumptions underlying the model. This explicitness makes it relatively easy to see
what the model predicts when it is applied in new ways (in verbal theorizing, what
counts as a prediction of the model is sometimes more hotly debated than the
predictions themselves).

2.1. A Priori Plausibility

Outsiders would rather believe a model with assumptions that they know to be true,
than one with assumptions that they have to accept without backup. The a priori

Figure 2. Examples of the different kinds of assumptions underpinning computational
models. The neural network model of the hippocampus (also shown in Figure 1c)
reproduces many features of hippocampal anatomy, such as the relative numbers of
principal neurons in parts of intrahippocampal connections (supported assumptions).
Other features of the model are clearly counterfactual. An example of such heuristic
assumptions is that LTP occurs in the model only if postsynaptic spiking follows a few
milliseconds after presynaptic firing, while some LTP occurs even for lags of 30–50
milliseconds. An example of an untested assumption, which could be true, is that there is
no substantial plasticity in the connections to and from basket cells on the time scale of
the model. Some untested assumptions concerned inhibitory interactions between the
hippocampus and the medial septum. These assumptions, the hypotheses, were the focus
of the paper in which the model was presented model (Meeter et al., 2004).

754 M. Meeter et al.
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7 plausibility of a model is thus a function of having its assumptions supported by
empirical evidence. Adding biological features does not in itself make a model more
likely to be structurally adequate, however. If certain features are unimportant for the
modeled behavior, to abstract away from them does not threaten structural accuracy.
It is not the presence of biological features per se that renders a model plausible, but
the presence of the relevant features as well as the absence of assumptions not in
agreement with biology. This can be seen from an analysis of the process of model
behavior derivation. In a technical sense, producing model behavior to fit data is
similar to deriving a theorem from a set of postulates. The derived behavior allows
the set of assumptions to be tested against data. By what is known as the Duhem–
Quine thesis (Quine, 1951), however, a single hypothesis or set of hypotheses can
never be tested in isolation; it is always tested together with the unavoidable
background of theory and auxiliary hypotheses: both are necessary for the derivation
of a concrete prediction. In the case of a model, these include the heuristic
assumptions that are necessary for concrete model behavior, but are in all likelihood
counterfactual. If it turns out that only the specific heuristic assumptions chosen
allow the model to produce its target behavior, then the model is not structurally
accurate (it does not produce the behavior with the same mechanisms as the brain).
Deriving predictions from a model thus involves what one could call a meta-
assumption of no commission: that the heuristic assumptions made are not critical
for the model behavior used to derive a prediction. If this meta-assumption is true,
many different sets of heuristic assumptions would, if combined with the evidence-
based assumptions and hypotheses, lead to the same model behavior.
There are, of course, also sins of omission. Abstracting away from biological

features may also ruin structural accuracy, if the elements left out in the abstraction
turn out to be causally relevant for the modeled data. If a model reproduces target
data, however, it can be concluded that the model contains at least enough features to
produce those data. This is not to say that all relevant assumptions are true: the
model may produce the behavior thanks to its heuristic assumptions. If a model fits
data, sins of omission can thus only be present in the presence of sins of commission:
if the right feature is not in the model, it takes a wrong feature to make up for it and
still produce the right behavior. There is thus an asymmetry, where sins of
commission have worse consequences for structural accuracy than sins of omission.
A priori plausibility therefore hinges strongly on the absence of unsupported features,
not the presence of supported ones.

2.2. Matching Data

Reproduction by the model of empirical data is a traditional standard for evaluating a
model. It is referred to as the extent to which the behavior of the model ‘matches’ the
to-be modeled data sets (Webb, 2001), or how well it ‘fits’ the data, or is
‘descriptively adequate’ (Chomsky, 1965; Jacobs & Grainger, 1994). How well a
model fits data is the domain of a vast technical literature, which we will not attempt
to summarize here (see Pitt, Myung, & Zhang, 2002; Zucchini, 2000). One important

Philosophical Psychology 755
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7 aspect to mention, however, is that match is only impressive in an inflexible model
(Roberts & Pashler, 2000). Flexibility refers to the amount of possible data patterns
that a model could fit. If it could fit any conceivable data pattern, it is not a virtue
that it can fit the true data.
In simulation models, flexibility is often hard to gauge. Traditionally, it has been

estimated as the number of free parameters in the model, although it is now well
established that this is a not a foolproof measure of how many data patterns a model
can fit (Pitt et al., 2002). In psychobiological models it is usually not clear what
counts as a free parameter and what not. For example, free parameters are often
hidden in the translation of model behavior to target behavior. Consider time: much
data have the form of a time duration (e.g., reaction times, interspike intervals) or is
set in time (e.g., a learning curve). In a computational model processes take up a
number of cycles or events, but the correspondence between such ‘model time’ and
real time is usually addressed only in the scaling of graphs that show the fit between
model and target behavior. Model time is fixed only in some low level models, where
it is bound by neurophysiology (e.g., Hodgkin & Huxley, 1952).
Even a model with no free parameters may have been tinkered with until it

produced the required behavior. That is, extra flexibility may be hidden in the
structure of the model, although it is impossible to quantify how much. It is clear,
however, that a sparse model, one with few assumptions, cannot have been tinkered
with as extensively as a complex model. Moreover, assumptions that are bound to
evidence also allow limited tinkering. We therefore suggest that the number of
assumptions not bound by evidence (heuristic and untested assumptions, the latter
including free parameter values) may be a rough measure of the flexibility of the
model. This suggests that sparseness, as a proxy for inflexibility, is an essential asset
for a model that is judged on its ability to match data.
What level of sparseness is required may depend on the number of data patterns

explained by the model. Free parameters and heuristic assumptions might be
forgivable in a model that explains a large number of independent data patterns.
An example is a model of the hippocampus and adjacent cortical areas (Norman &
O’Reilly, 2003). Although the model is not very sparse, this is made up by the fact
that the model explained many separate findings in the memory literature.

2.3. Deriving Predictions

The strongest support a model or theory can receive is that daring predictions it
makes are shown to be correct (Popper, 1934; Roberts & Pashler, 2000). The word
‘prediction’ has been subject to some inflation: many modelers call any model
behavior a prediction, even when the data they are fitting have already been around
for a long time (Roberts & Pashler, 2000). Here, we mean by a prediction something
derived from the model behavior of which the modeler did not know whether it was
the case. More suspicious minds may speak of predictions only if nobody knew,
at the time that the model was presented, whether the prediction was true or not.

756 M. Meeter et al.
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7 Computational models of the brain are seldom presented only after daring
predictions have been proven to be correct (exceptions are Dehaene, Sergent, &
Changeux, 2003; Rokers, Mercado, Allen, Myers, & Gluck, 2002). Many papers
presenting a new model, however, close with a long list of predictions. These are then
left open for experimentalists to confirm or refute (e.g., Bogacz et al., 2001; Hilgetag,
2000; Meeter & Murre, 2004; Raffone & Wolters, 2002; Rolls & Deco, 2002).
Sometimes presentation of the model is followed by papers proving daring
predictions correct (e.g., Frank, 2005; Frank, Seeberger, & O’Reilly, 2004, where,
publication lags hide the earlier acceptance of the modeling paper). Although there
are examples of models that made daring predictions and were supported through
them, there are unfortunately also examples of predictions along the line of ‘‘more
errors will be made in the difficult that in the easy condition.’’ Of course, this is not
the kind of model support we have in mind.
The likelihood that a model makes truly risky predictions is greatest if not only the

modeler, but also others can derive predictions from the model. Whether this is
possible is a function of how tightly the model is bound to its original domain.
Modelers present their model as applied to one or more domain, such as a set of
psycholinguistic tasks, a particular type of neuronal responses, or activity levels in a
brain region generated by certain tasks. A good model is not bound to this ‘native’
domain, but is able to generate predictions outside it.
Jacobs and Grainger (1994) distinguish two ways in which such extension of the

model can occur. Horizontal generality refers to the ability of models to be applied to
new tasks, behavioral measures, or circumstances, vertical generality to the ability of a
model to account for the behavior of the modeled system at different scales—
different temporal scales or at different levels. For example, if a psychobiological
model of memory links certain processes to particular brain regions it can generate
novel predictions on the outcome of brain lesions (Gluck & Myers, 1993; Norman &
O’Reilly, 2003). This will of course only work if the modeler is specific about what
part of reality the whole model refers to. Else, failure of a model prediction can be
disavowed on the basis that the model was misunderstood and did not really make
the prediction that was tested. Such discussions do, in fact, occur in the literature.

3. Modeling: the Good, the Bad, and the Ugly

To summarize, models can be supported by a priori plausibility, their match to
empirical data, or the generation of daring predictions.

. For a priori plausibility, as few assumptions as possible should lack support of
empirical evidence.

. For a model to be supported by its match of the data, it should be sparse, making it
inflexible relative to the quantity of data fitted. This may be the case because the
model either contains few assumptions, or because all or many assumptions are
evidence-based (i.e., bound by biology).

Philosophical Psychology 757
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7 . For the model to be testable via the derivation of predictions, it should be
vertically and horizontally general. For that, the ontology of the model should
be clear.

From this analysis, two strategies for producing convincing models immediately
become apparent. The first would be to build a sparse, inflexible model that can
be genuinely tested against data using techniques that punish the model for
flexibility (Pitt et al., 2002; Zucchini, 2000). The second would be to build a
more complex model, but to bind as many assumptions as possible to biological
evidence.

3.1. Good Modeling: Sparse Models

Sparse, inflexible models abound in the mathematical model literature (Cherniak,
Changizi, & Kang, 1999; Chessa & Murre, 2002; Raaijmakers & Shiffrin, 1981;
Shiffrin & Steyvers, 1997), for example, in low-level models of neurons (Hodgkin &
Huxley, 1952; Kistler, Gerstner, & van Hemmen, 1997; Volny-Luraghi, Maex,
Vosdagger, & De Schutter, 2002). There are also a few psychobiological models that
explicitly strive for sparseness (Botvinick et al., 2001; Lengyel et al., 2005; Meeter,
Myers, & Gluck, 2005). Botvinick et al. (2001), for example, added only one node to
existing models, and with that small addition fitted several new data patterns.
The sparseness strategy is especially appropriate for models that are used to analyze

data or as an existence proof. For example, some abstract models are used to derive
forgetting functions from assumptions about the brain, These are then fitted on data,
and used, for example, to analyze differences in forgetting between older and younger
adults. Since forgetting data can be fitted by functions with just two free parameters,
only very simple, sparse models can be used for such analysis. More in general, data
analysis via a computational model is always only appropriate if the model is
transparent and simple, so that the relation between the empirical data and the model
outcome is clear. An existence proof is valid independent of its complexity or the
support for its assumptions. Nevertheless, an existence proof is more compelling
when it is transparent, and when few assumptions are necessary to produce the
wished-for behavior. Transparency also makes it easier to link the model to brain and
behavior.

3.2. Good Modeling: Binding to Biology

For many psychobiological models, the sparseness strategy is not plausible, however.
They are too elaborate and flexible, precisely because their goal is broader than fitting
only behavioral data or only brain data. The second strategy, which overlaps partly
with the first, is to bind as many aspects of the model as possible to biology, by using
evidence-based assumptions and by making the ontology of the model explicit. With
this second strategy, modelers cannot rely on the match with data to support their
model (although not reproducing existing data would of course falsify the model).
Instead, modelers will have to rely on a priori plausibility, and on the ability of the

758 M. Meeter et al.
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7 model to generate testable predictions. This second strategy thus allows the natural
strength of psychobiological models, their vertical generality, to be played out by
generating hypotheses at different levels.
In an extreme case, all assumptions are evidence-based. This would make the

model’s behavior plausible as a prediction independent of any fit of real data. This is
no fata morgana. In fact, all models that purport to show computational constraints
valid for the brain must follow this reasoning. If, for example, the memory capacity
of the hippocampus can validly be inferred from the model of Treves and Rolls
(1994), it must be the case that the model is wholly structurally accurate and contains
all relevant assumptions. The validity of constraints derived by such a model critically
depends on the meta-assumption of no commission and omission described above,
that no heuristic assumption is critical for the behavior and no relevant assumption is
left out. If these meta-assumptions are not true, the derived constraint may only
apply to the model, not to the brain.

3.2.1. A requirement: ontological clarity
For the second strategy (binding assumptions to data) to be plausible, it must be clear
what counts as an evidence-based assumption and what doesn’t. Whether or not
assumptions are supported can only be ascertained when it is clear what the model
refers to in reality. If modelers are vague about what modules in their model stand
for, it would be disingenuous to claim support from neuroanatomy for the
architecture of the model. Similarly, if modelers are vague about the time scale of
model events such as spiking, it would be disingenuous to claim that the inclusion of
complex spike-time dependent learning rules makes the model plausible. For model
assumptions to garner support, it is thus crucial that modelers are clear about the
ontology of their model. This is even more true for generality: predictions can only be
unambiguously derived from a model if it is clear to outsiders what it is a model of.
If it is clear what a model refers to, on the other hand, it can be combined with other
theories of the same substrate, and/or with any number of conjunctive hypotheses,
leading to an in principle unbounded number of predictions that can be derived
(Devitt, 1997). Whether or not these predictions can be tested with present
techniques is of course another matter.
A useful notion here is that of the ‘level of representation’ of a model. Several lists

for such levels have been proposed, for example one consisting of the neuron,
network, map, system, and whole-brain level (Sejnowski & Churchland, 1993). In
setting up such lists, there is usually no claim that each level has a distinct ontological
status, or that phenomena at those levels are independent of one-another. Rather,
each level is its own description of the same organ, the brain, that is the focus of
research in neuroscience and psychology (Bakker & den Dulk, 1999). What counts as
a level is often hard to decide, however. Size, the criterion used to discern levels in the
list above, does not readily create levels of entities that interact with one another (e.g.,
Bechtel, 2007). Another approach would be to construct lists of epistemological
levels, in which each level is addressed by different epistemological techniques
(typically a discipline, as in the ‘biological’ and ‘psychological’ levels). These are then
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7 sometimes held to be independent of one another (Putnam, 1973). Such a carving-up
of levels does little good in the brain sciences, however, where interdisciplinary
research is common. Such research would presumably either fall in between levels or
create infinite new shadings of levels.
In the brain sciences, ontological and epistemological considerations can reinforce

one another in deciding on levels. First, by giving a model a certain ontology, a
modeler is also declaring the model vulnerable to testing with certain techniques.
One cannot, for example, claim to model a brain part and then disavow predictions
about what happens when that brain part is lesioned. Second, epistemological
considerations can help define levels in an ontologically motivated list. Table 1 gives
an example of a list of ontological levels driven by epistemological considerations.
For each level, it specifies the entities modeled, but also the kinds of data that are
addressed at that level. It identifies a behavioral, neuropsychological, circuit,
neurophysiological and a biophysical level. The brain part sets a level (the
neuropsychological level), and not for example the cortical column. This is because
the brain part is the level at which a set of scientific methods applies (i.e., those of
neuropsychology, animal lesion studies, and functional imaging), and this is not the
case for the cortical column.1

In determining at what level a model is, one option is to look only at elemental
units in the model that are said to correspond to something in reality. The level of
these elements can then be given as the level of the model (Haefner, 1996). We
propose a broader approach, in which every level at which the model purports to
model something is a level of the model. If a model, for example, includes model
neurons in a model hippocampus and a model hypothalamus, it would be at the
neurophysiological level because it models neurons, and also at the circuit level
because it models the physiology of brain parts. If it would also model some
behavioral task, it would additionally be at the behavioral and neuropsychological
level (as the model then also must predict what would happen to behavior if one of
the two modeled structures were lesioned). A psychobiological model is one that is
situated at both the behavioral level, and at least one level below it. The more levels of
representation a model has, the more data can refute the model.
Psychobiological modelers are often not very clear at which levels they see their

model—whether or not, for example, their units can be seen as a sample of real
neurons, or whether or not fMRI can falsify their model. The imprecision may
concern the structures modeled (e.g., stating that a model stands for the ‘Medial
Temporal Lobe’ or the ‘visual system’ without specifying what belong to these regions
or systems). Moreover, heuristic assumptions can invalidate the comparison of the
behavior of model parts with activity in the brain regions modeled. For example, if
model nodes in a neural network have both positive and negative activations (as in
the Hopfield network), it becomes difficult to compare node activation with neural
firing in the target structure (Hasselmo, 1995b). Such heuristic assumptions may thus
make derivation of predictions at a low level impossible. Imprecision can also be
about the organism modeled (e.g., a model matches only human behavior, but the
underpinning of its assumptions come from animal physiology). Although it can be
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7 claimed that a model is true of the target structure in several related species, such
generality cannot be taken for granted or deduced from similarities in behavior (see
Treves & Samengo, 2002 for a counter example). Lastly, the imprecision may concern
aspects of the events modeled, for example if the time scale of the simulation is unclear.
An interesting example of prediction outside of the domain of the model, despite

ontological vagueness of three kinds, is offered by a model of human recognition
memory (Norman & O’Reilly, 2003). This model consists of a fairly worked-out
hippocampal model, and a simple, quite abstract neocortical module that is identified
with the ‘medial temporal lobe neocortex’. In this last module, patterns are stored in
a set of weights between an input and an output layer. If a pattern is presented for
a second time, it leads to higher activity in the ‘winners’ in the output layer of the
neocortical region, which is interpreted as a familiarity signal.
In their presentation of this model, Norman and O’Reilly note an apparent

contradiction between this mechanism and data from cell recordings from macaque
perirhinal cortex. Xiang and Brown (1998) showed decreased firing for familiar
patterns in perirhinal neurons. The explanation offered by Norman and O’Reilly for
this contradiction is less remarkable than the fact that they felt compelled to
comment on it. Their model is targeted at human behavioral data, is rather abstract,
and does not include activity measures on an explicit time scale. The fact that
Norman and O’Reilly see monkey electrophysiology as relevant for their model
implies that they see their model as situated on at least the circuit level in Table 1, and
describing both the human and the macaque perirhinal cortex. Given that they
derived successful predictions at the behavioral and neuropsychological levels, their
model enjoys considerable vertical generality.

3.3. Modeling, the Ugly

The analysis of model support does not only show ways in which computational
modeling can be good, but also its corollary: ways in which modeling can be bad. A
complex model that explains little data is clearly not one that we will learn much
from. But is such a model automatically so bad that it does not deserve to be put out
on the intellectual market place? Modelers may sometimes not be able to construct a
model supported by and explaining lots of data. To base one’s model on and use
one’s model to explain empirical evidence, that evidence must also be there. At low
levels, data are often available for this purpose (e.g., many parameter values in the
Hodgkin-Huxley formalism can be extracted from experimental data). At higher
levels, however, there is no abundance of restricting data. Both neuropsychological
and imaging data are still relatively sparse, imprecise, often disputed and not well
understood. At these levels, modeling is a relatively free, unconstrained activity
(Murre, 2002). The staggering variety in published computational models at these
levels attests to this freedom.
Should modeling in these areas then not just wait until more data are available?

We would argue that there is a case for models that are not bad, but ‘ugly’:
psychobiological models that are not tied very neatly to biology, nor are very sparse,
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7 nor explain that much data, but that are the first in their area and a stab in the right
direction on all three fronts. Such models can function as a seed for further efforts.
For example, in the area of the consolidation of long-term memory, the first
computational model was that of Alvarez and Squire (1994). It was not very close to
biology, nor very sparse, and explained only a single data pattern (the gradient often
seen in retrograde amnesia after damage to the medial temporal lobe). Nevertheless,
this model made a hitherto vague verbal theory—that memories are consolidated
from the hippocampus to the neocortex—explicit, and provided a start for later
models, which explained more data and were often closer to biology, to build on
(McClelland et al., 1995; Meeter & Murre, 2005) or argue against (Nadel et al., 2000).

4. If All Else Fails: Model Hierarchies

For modelers that attempt to explain behavior from brain mechanisms, it may be
tempting to retreat to lower levels where evidence is more abundant. However,
incorporating low-level data into a model that must also provide explanations for
behavior may make the model unwieldy. Consider what would have happened if
Norman and O’Reilly (2003) had set out to change their memory model to account
for the electrophysiological data provided by Xiang and Brown (1998). It is very
unlikely that assumptions needed to explain neurophysiology would be of much help
in explaining the data targeted by Norman and O’Reilly (2003), such as mirror effects
in recognition memory. They would have needed one set of assumptions to explain
the phenomena at the neuronal level, and then another set to explain behavioral
effects. Possibly, yet a third set of assumptions would have been needed to bridge the
intermediate levels. Because many of these assumptions would have lacked
supporting data, this would have made their model top-heavy with heuristic
assumptions. In such cases, when plausible biological underpinnings are not available
or their inclusion requires the addition of many untested and heuristic assumptions,
it may be preferable to disregard some facts in order to construct a simpler model
(following the first strategy). This was done, in fact, by Norman and O’Reilly (2003).
There is an alternative to falling back on an abstract model remote from biological

reality, or to building a complex, unconstrained biological theory that needs many
untested and heuristic assumptions to work. One may tear the complex,
unconstrained model apart into several simpler models at different levels. In this
way, a hierarchy of models is created, where each model is a more or less detailed
elaboration of the same idea. Models in the hierarchy could then constrain one-
another and impose restrictions where behavior and neurobiology pose too few. This
is the essence of what we call the model hierarchy approach.

4.1 A Model Hierarchy

The central idea of model hierarchies is that a theory is not implemented in a single
model, but in several models at varying levels of representation. Lower-level models
in this family are concretizations of higher-level models, and higher-level models are
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7 abstractions, simplifications of the lower-level models. An example of such relations,
outside of computational modeling, is the classical theory of optics, which describes
light propagation in terms of rays, and the theory of electromagnetic radiation,
describing propagation in terms of electromagnetic waves. The wave theory is more
correct, but classical optics is widely regarded as useful at a macro level, explaining,
for instance, how light is reflected or bent at the interface between two dissimilar
media. There is thus added value to having two hierarchically organized versions of
the same theory. Another example, to which we will return below, is the relation
between the biochemistry of DNA and behavioral genetics.
The relations between models at different levels in the proposed hierarchies are

similar to those between different levels in the hierarchy of Marr (1982), i.e., between
the implementation and algorithmic levels, or between the algorithmic and
competence levels. A lower-level model can, for example, be an algorithmic
implementation of a higher-level model, with the higher-level model specifying the
competences of the lower-level model. In Marr’s view the levels are independent,
whereas relations between models in the hierarchy imply that no assumption in one
model may be in contradiction with assumptions or behavior of the others. Ideally,
all higher-level models would in principle be translatable into the framework of lower
level models, without loss of function. For example, if a modeler had unlimited time
and unlimited computational resources, all elements in his or her behavioral level
model could be replaced by the most low-level biologically-grounded elements
simulated at a millisecond scale, and the model would still be able to simulate
behavioral phenomena occurring at a scale of minutes and hours. Although this is
usually an unattainable ideal, given that any model needs heuristic assumptions to
work, it is one with force. It excludes the use of some heuristic assumptions that
preclude translation of the model into a lower-level one, such as the use of negative
activations, negative weights, and error-correcting learning.
The idea of replacing all elements of a higher-level model by elements of a lower-

level model was used by Putnam (1973) to support the independence of levels, a
claim also defended by Marr (1982). Putnam’s example was a wooden board with
two holes. The task was to explain why a peg goes through one and not the other. The
correct explanation, he said, was that one hole was shaped right and one was not.
Trying to improve on this explanation by going down, through the molecules in the
wood, to quantum theory would, even if feasible, only be silly. In similar fashion,
explanations for psychological phenomena should reside at the psychological level,
not try to go below it. The reductionism that Putnam was arguing against (trying to
reduce psychology to natural sciences) is now daily practice. Nevertheless, part of his
argumentation, that trying to explain a high level phenomenon from a low-level
phenomenon leads to unwieldy complex accounts, is exactly the problem that led us
to suggest model hierarchies.
What advantages do model hierarchies have that make them better than Putnam’s

solution of rejecting reductionism and sticking to one level? In many cases, they come
down to that a wooden peg with holes is a particularly bad metaphor for the scientific
issues in psychology. Serious questions in psychology often do not have obvious
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7 answers at the psychological level.2 If the answer to many of these questions involves
the brain, as many psychologists assume, a psychobiological model that connects
brain and behavior may be called for. In case where the data gap occurs, there are too
few biological and behavioral constraints to develop either abstract, testable models
or elaborate theories. In such cases, a modeling hierarchy may allow the development
of a coherent framework that forms a viable theory. By splitting up the model in a
model hierarchy, each model in that hierarchy can be simple and transparent, and
data at all levels can be incorporated in or accounted for by the model. Behavior of
the lower level model may feature as an untested assumption in the higher-level
model. Without the lower level, this would just be one of possibly many assumptions
that an outsider just has to accept or reject. With the lower-level model, the
plausibility of the untested assumption can be assessed. Moreover, support for
the lower level model would strengthen the higher-level model, and rejection of the
lower-level model would mean at least a reconsidering of the higher-level model.
Above, it was mentioned that replacement by elements of high-level model

structures by lower-level structures is usually an unattainable ideal: Attempting to
translate the higher-level model into the lower level model will usually uncover small
inconsistencies between them.3 To go back to an example outside of the modeling
literature, the methods of behavioral genetics assume that there is no change in genes
when they are passed from parent to offspring. Meanwhile the biochemistry of DNA
has enlightened us on all sorts of changes that occur in DNA as it is passed on. The
claim that behavioral genetics and the biochemistry nevertheless stand in a
hierarchical relation entails the further claims that the inconsistencies are
insubstantial, and that when they arise the lower-level model is always right. Both
are clearly beliefs of behavioral geneticists, who will readily admit that biochemistry
has the last word on DNA, but believe that mutations are sufficiently rare not to
invalidate their methods (Martin, Boomsma, & Machin, 1997; Plomin, DeFries,
McClearn, & McGuffin, 2001).
So what, in the end, makes two models stand in a hierarchical relationship to one-

another? Both models must be of the same substrate, with the lower-level model
either modeling exactly the same part of the brain as the higher-level model, or an
identifiable part of the higher-level model. Second, assumptions of the one model
may not be in substantial contradiction with the other model. Third, the lower-level
model must explain untested assumptions of the higher-level model. Whether this is
the case is in first instance a matter of the modeler claiming that this is so. In second
instance, his or her claims are empirical (they relate to the factual relations between
models), and can be criticized by other scientists.

4.2. Examples of Hierarchies

Several examples of such hierarchies have already been presented in the literature.
In the literature on retrograde amnesia (remote memory loss), biological information
only weakly constrains modeling, and the target behavioral data consist of
a qualitative pattern of just two curves (the decreasing forgetting curve and
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7 increasing Ribot curve of graded retrograde amnesia). Here, accounting for empirical
data while at the same time presenting a more basic model has been accomplished
with two hierarchies of models. McClelland et al. (1995) presented a backpropagation
network as an existence proof for their central mechanism, interleaved learning.4

With a mathematical abstraction of the same process, they fitted several retrograde
amnesia curves to show how their process would apply in the real world. Meeter and
Murre (2004; 2005; Murre, 1996) presented another neural network model of
amnesia, TraceLink. The assumptions underlying TraceLink were also included in a
concise, mathematical model of learning and forgetting (Murre et al., 2007).
By fitting this model to curves from the amnesia literature, the theory is explicated on
the behavioral level, leading to, for example, estimates of the time course of
consolidation.
Moreover, TraceLink contains two untested assumptions about learning that were,

at the level of the TraceLink model, not testable (the neuropsychological level in
Table 1). It assumes that hippocampal codes are independent of the neocortical ones
(i.e., if two patterns have similar neocortical representations, they will nevertheless
have orthogonal hippocampal ones), and that modulation of learning produces high
learning rates for novel patterns in the hippocampus, and low learning rates for old
patterns. Both assumptions were fleshed out in separate, lower-level models, the first
in a model of the parahippocampal gyrus (Talamini, Meeter, Murre, Elvevåg, &
Goldberg, 2005), the second in a model of cholinergic modulation of the
hippocampus (Meeter, Talamini, & Murre, 2004) inspired by ideas of Hasselmo
(e.g., 1995a). In both cases, the lower level model makes explicit what needs to be
the case for the higher-level TraceLink model to be true. Moreover, they turn an
untested—and untestable—assumption of TraceLink into testable behavior of a
lower level (see Figure 3).
With these two hierarchies, not many data were available to constrain modeling.

In more developed areas, model hierarchies can also play a useful role by allowing a
modeler to combine the virtues of abstract, high level models with those of an
inclusive, vertically general model-as-theory, much like the approach taken in other
domains of science, such as optics or genetics. An example is a mean-field derivation
of firing rates (Amit & Brunel, 1997; Brunel & Wang, 2001), which determines the
average discharge rate of populations of spiking neurons in a network, simplifying its
calculations. Another example is the relation between detailed modeling of spike
generation allowed by the very complex Hodgkin–Huxley formalism (Hodgkin &
Huxley, 1952), and the much simpler formalism of spike response models. Both
model currents and spike formation in neurons, but the Hodgkin–Huxley formalism
does this in more detail and at a smaller time scale than the spike response model.
By showing that these models produce approximately the same behavior, Kistler et al.
(1997) showed that the equations of their spike response model approximate the
behavior of the Hodgkin–Huxley model neuron. The authors could then use the
validity of the Hodgkin–Huxley model to argue for their own equations, changing
them from untested assumptions to supported assumptions. Their work allows
modelers to use these neuron derivations, enjoy their lower computational load and
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7 

reduced set of parameters, and still have the same structural accuracy as when they
had used the original Hodgkin–Huxley model neurons. In this way, the virtues of an
explicit, low-level theory and a sparse, simple model can be combined.

5. Conclusion

Computational models of the brain hold great promise as a bridge between biology
and psychology. Many models that attempt to bridge the gap, those that we referred
to as psychobiological, have already been proposed. If these models are to fulfill this
promise, however, they will have to be structurally accurate. If model layers stand for
cortical regions without there being a clear relation between layer behavior and that
region, what can we learn from such a model? That the model can generate the target
behavior while the brain works in some mysterious other way is surely not a
worthwhile lesson.
Structural accuracy is the goal of the model, not something that can be ascertained

beforehand. Three ways to support structural accuracy were discussed. A model may
be a priori plausible because of its use of evidence-based assumptions. It may also be
supported by its fit of existing data provided the fits are not caused by an excess of
flexibility in the model. Finally, it may be supported by the confirmation of risky
predictions generated by the model. For all three sources of support, it was argued

Figure 3. Example of a model hierarchy of three models of hippocampal involvement in
memory (also shown in Figure 1). Features that are untested assumptions at higher levels
are fleshed out at lower levels. The two examples shown are the assumption that
memories are copied from an MTL store to a neocortical store, fleshed out in the
Tracelink model, and the assumption of a modulatory system controlling plasticity in the
hippocampus, fleshed out in the more detailed model of the hippocampus and its
interactions with the medial septum.
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7 that models need to be bound to biology. As ‘biological plausibility’ is more often
claimed than substantiated (Jacobs & Grainger, 1994), such a claim is not enough.
Instead, modelers must be explicit about the ontology of their model, and use
assumptions supported by data.
In some cases there may not be data available to support assumptions. We have

suggested a strategy for avoiding the construction of unconstrained cathedrals of
speculation. In this strategy, a hierarchy of models is developed that all share the
same assumptions, and higher-level models can in principle be translated into
the formalism of the lower-level models. In a sense, such a hierarchy incorporates the
goals of classical reductionism, where constructs of a higher level are identified with
entities on lower levels. These hierarchies of models allow the development of theory
without unrestricted dabbling in speculative theorizing. Moreover, they may allow a
combining of the virtues of sparse, testable models and vertically general, biology-
rich models. Modeling the same substrate at different levels of representation, as
proposed here, may thus have benefits that exceed the merits of each model in the
hierarchy on its own.
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Notes

[1] There are computational models that operate at the level of cortical columns, but these have
generally failed to get traction; perhaps because of a mismatch with available empirical
techniques.

[2] Even when they do the answers are usually still in need of an explanation. For example,
memory decay may be part of the psychological answer to the psychological question of why
we forget, it is still an interesting question how that decay occurs. To that question a
psychological answer is unlikely.

[3] This is generally the case for theories that describe the same phenomena at two levels, as the
debate on reductionism has shown (e.g., Schaffner, 1967; Sklar, 1967).

[4] Interleaved learning refers to mixing learning trials for new patterns with repetition trials for
old, already stored patterns.
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