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Predictive coding models suggest that predicted sensory signals
are attenuated (silencing of prediction error). These models, though
influential, are challenged by the fact that prediction sometimes
seems to enhance rather than reduce sensory signals, as in the
case of attentional cueing experiments. One possible explanation is
that in these experiments, prediction (i.e., stimulus probability) is
confounded with attention (i.e., task relevance), which is known to
boost rather than reduce sensory signal. However, recent
theoretical work on predictive coding inspires an alternative
hypothesis and suggests that attention and prediction operate
synergistically to improve the precision of perceptual inference.
This model posits that attention leads to heightened weighting of
sensory evidence, thereby reversing the sensory silencing by
prediction. Here, we factorially manipulated attention and pre-
diction in a functional magnetic resonance imaging study and
distinguished between these 2 hypotheses. Our results support
a predictive coding model wherein attention reverses the sensory
attenuation of predicted signals.
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Introduction

Over the past decades, it has become increasingly clear that

perception is not determined solely by sensory input but is

strongly influenced by prior knowledge. Predictive coding

models of perception suggest that predicted sensory signals are

attenuated, through inhibition of those sensory inputs that are

consistent with current top-down predictions (i.e., silencing of

prediction error; Rao and Ballard 1999; Friston 2005; Jehee and

Ballard 2009). These models account for several extraclassical

receptive field effects (Rao and Ballard 1999; Spratling 2010)

and are in line with empirical findings that predicted stimuli

evoke reduced neural responses (Alink et al. 2010; den Ouden

et al. 2010; Todorovic et al. 2011). However, despite their

computational and empirical appeal, predictive coding models

have been challenged early on (Koch and Poggio 1999) by the

fact that prediction sometimes seems to enhance rather than

reduce sensory signals (Doherty et al. 2005; Chaumon et al.

2008), as in the case of attentional cueing experiments

(Mangun and Hillyard 1991; Anllo-Vento 1995).

One possible explanation is that in these experiments,

prediction (i.e., whether a stimulus is likely to be presented) is

confounded with attention (i.e., whether a stimulus is

behaviorally relevant; for a discussion, see Summerfield and

Egner 2009), which is known to boost rather than reduce

neural activity in sensory regions (Corbetta et al. 1990;

Brefczynski and DeYoe 1999; Gandhi et al. 1999; Martı́nez

et al. 1999; Somers et al. 1999; Boynton 2009; Reynolds and

Heeger 2009). In fact, attention is often investigated by

manipulating subjects’ expectations about upcoming stimuli

(Posner 1980), and the terms ‘‘attention’’ and ‘‘expectation’’ are

sometimes used interchangeably (Kastner et al. 1999; Corbetta

and Shulman 2002). Thus, attentional cueing may enhance

sensory activity, only because the negative impact of prediction

is outweighed in magnitude by the positive impact of

attentional mechanisms. In this account, prediction and

attention have opposing main effects (Fig. 1A).

However, recent Bayesian models of perception inspire an

alternative hypothesis. They propose that attention may

enhance the precision of perceptual inference (Rao 2005;

Friston 2009). Under this account, attention and prediction

operate synergistically to optimize perceptual inference. More

specifically, attention boosts the precision of predictions,

leading to heightened weighting of sensory evidence (or,

equivalently, prediction error), thereby reversing the effect of

sensory silencing by prediction alone (for a schematic de-

piction of this effect, see Fig. 2). This reflects the fact that in

Bayesian formulations of perceptual inference, prediction

errors are weighted according to their precision, equivalent

to weighting residuals by the inverse variance (precision) of

the measurement. In other words, prediction errors are

weighted according to how informative they are, and the

information carried by a prediction error depends on both the

current predictions and the reliability of the new data. In this

sense, spatial attention can be thought of as ‘‘highlighting’’

a region of space, thereby increasing the precision of in-

formation coming from this region. A model implementing this

mechanism has been shown to successfully simulate electro-

physiological and psychophysical correlates of the Posner

spatial cueing paradigm (Feldman and Friston 2010).

Mechanistically, precision is assumed to be encoded by the

postsynaptic gain of neurons representing sensory data (pre-

diction error), and attention increases precision by boosting

this synaptic gain, in line with established accounts of the

mechanisms of attention (Treue and Martı́nez Trujillo 1999;

McAdams and Maunsell 2000; Reynolds and Heeger 2009).

Accordingly, neuroimaging studies have provided evidence for

attentional enhancement of sensory signals in human visual

cortex (Corbetta et al. 1990; Kastner et al. 1998; Gandhi et al.

1999; Martı́nez et al. 1999).

This account predicts a specific interaction between pre-

diction and attention: In the absence of attention, prediction

attenuates sensory signals, but attention reverses this effect by

boosting the precision of predictions (Figs 1B and 2). This

interaction reflects the fact that attentional boosting of

prediction errors rests upon the presence of predictions (and

subsequent errors).

In summary, prediction and attention may operate as

separable and antagonistic processes, the effects of which are

purely additive. Conversely, attention may be an integral part of
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optimal prediction and therefore depend on the emergence of

predictions and their errors. Formally, the key feature that

distinguishes these 2 hypotheses is the presence of an

interaction between prediction and attention. In this study,

we factorially manipulated spatial attention and prediction and

probed their respective effects on the neural responses evoked

by visual stimuli using functional magnetic resonance imaging

(fMRI), to adjudicate between these 2 hypotheses.

Subjects performed an orientation identification task on

gratings that could appear either on the left or on the right of

fixation. Spatial attention and prediction were manipulated by

2 separate (and independent) cues, presented at fixation

(Fig. 1C,D). The attention cue indicated which visual hemifield

was task relevant; subjects were instructed only to perform the

orientation identification task if the stimulus appeared in the

indicated hemifield. Attentional orienting was encouraged

further by presenting the grating stimulus briefly (50 ms)

and embedded in noise. Importantly, the attention cue

contained no information on the likelihood of a stimulus

appearing in the indicated hemifield. Likelihood was indicated

by a separate prediction cue, which appeared before each

block of 8 trials, consisting of either the word ‘‘left’’ (indicating

a 75% likelihood of stimuli appearing on the left), ‘‘right’’

(indicating a 75% likelihood of stimuli appearing on the right),

or ‘‘neutral’’ (indicating a 50% likelihood of stimuli appearing

on either side). The prediction cue was independent of the

attention cue and therefore contained no information on the

task relevance of stimuli.

Our data reveal an interaction between prediction and

attention in early visual cortex: Predicted stimuli engendered

reduced activity compared with unpredicted stimuli when they

were unattended and task irrelevant, but this pattern reversed

when the stimuli were attended and task relevant. Therefore,

these results support a predictive coding model wherein

attention and prediction operate synergistically to improve the

precision of perceptual inference (Friston 2009). This contrib-

utes to resolving the controversy in the literature regarding the

effects of prediction on neural responses (Rauss et al. 2011).

Materials and Methods

Subjects
Twenty-two healthy right-handed individuals (15 females, age 24 ± 3.4,

mean ± standard deviation [SD]) with normal or corrected-to-normal

vision gave written informed consent to participate in this study, in

accordance with the institutional guidelines of the local ethics

committee (Commissie Mensgebonden Onderzoek region Arnhem--

Nijmegen, the Netherlands). Data from 3 subjects were excluded due

to excessive head movement (more than 3 mm within an experimental

session). Two subjects were excluded since they reported after the

experiment that they had not understood the task, in particular the

meaning of the cues.

Experimental Design
Subjects engaged in a grating orientation identification task. The task

was divided into 2 sessions, with each session consisting of 42 blocks of

8 trials, yielding a total of 672 trials per subject. Each block started with

Figure 1. Hypotheses, paradigm, and retinotopy. We adjudicated between 2
hypotheses relating to the role of attention and prediction. (A) Hypothesis 1: attention
and prediction have opposing effects, and the excitatory effect of attention outweighs
the inhibitory effect of prediction, thereby leading to an increased response to
predicted attended stimuli compared with unpredicted unattended stimuli (corre-
sponding to ‘‘valid’’ and ‘‘invalid’’ in spatial cueing terminology, respectively). Under
this hypothesis, attention and prediction have purely additive effects. (B) Hypothesis
2: attention and prediction work together synergistically to improve the precision of
predictions, leading to stronger weighting of prediction error for predicted attended
stimuli. Like hypothesis 1, this hypothesis also predicts an increased response to
predicted attended stimuli compared with unpredicted unattended stimuli but due to
an interaction of attention and prediction, instead of opposing main effects. (C,D)
Paradigm. Each block started with a prediction cue that indicated the likely location of
stimuli in the subsequent block (cue validity was 75%). Each trial started with an
attention cue, which informed subjects about which side was task relevant. After
a variable delay, a stimulus appeared on either the left or the right side. When the
stimulus appeared on the task-relevant (attended) side, subjects had to indicate the
orientation of the grating. Note that the attention cue had no predictive value with
regard to stimulus location. (C) Example of an attended unpredicted trial. Subject
predicts a stimulus on the right side but is instructed to attend to the left side. The
stimulus appears on the left (attended, unpredicted) side. (D) Example of an un-
attended predicted trial. Subject predicts a stimulus on the left side but attends to the

right side. The stimulus appears on the left (unattended, predicted) side. (E)
Retinotopic mapping and stimulus activation are overlaid on flattened occipital
cortices of a representative subject. Activation maps indicate stimulus-responsive
voxels, black lines represent borders of V1, V2, and V3. Stimuli activated dorsal parts
of contralateral V1, V2, and V3.
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a prediction cue that indicated the likely location of stimuli in the

subsequent block of trials (Fig. 1C,D). The cue was presented

centrally for 1000 ms and consisted of either the word left (indicating

a 75% likelihood of stimuli appearing on the left), right (indicating

a 75% likelihood of stimuli appearing on the right), or neutral (a ‘‘no

prediction’’ control condition, with a 50% likelihood of stimuli

appearing on either side). The different block types were pseudor-

andomly interleaved (repetitions of the same block type were

prevented).

Each trial started with a centrally presented attention cue (for

200 ms), consisting of a small triangle that indicated the hemifield

subjects had to attend to, while maintaining fixation. Following

a variable delay (2000--3000 ms), a circular grating stimulus was briefly

flashed (50 ms) in either the left or the right visual field. Subjects were

instructed to respond only when the stimulus appeared in the attended

hemifield, that is, the hemifield indicated by the attention cue. Stimuli

on the unattended side did not require any response and could be

ignored. Importantly, the attention cue contained no information about

the likely location of a subsequent stimulus; the prediction cue (see

above) was the only probabilistic cue. Instead, the attention cue told

subjects which visual hemifield was task relevant. Therefore, the

attention cue had 100% validity in terms of where attention needed to

be deployed for successful task performance (unlike classical Posner

paradigms, in which subjects also need to perform their task if the

stimulus appears in the ‘‘unattended’’ field, see Posner 1980). The

response interval (1700 ms) was followed by a variable intertrial

interval (300--1300 ms), resulting in an interstimulus interval of 4--6 s,

sufficiently long to prevent low-level adaptation to a brief (50 ms)

stimulus (Nelson 1991; Boynton and Finney 2003). The interval

between cue and stimulus and the intertrial interval were jittered to

optimize the efficiency of our event-related design and to be able to

dissociate the responses to cues and stimuli (Dale and Buckner 1997).

Subjects were instructed to maintain fixation on a centrally presented

fixation point throughout the trial. There was a rest period after each

7 blocks and between the 2 sessions.

The stimulus consisted of a circular luminance-defined sinusoidal

grating with a spatial frequency of 3.33 cycles/degree and fixed phase.

Grating contrast (6.3 ± 1.1%, mean ± SD) was set on the basis of

individual performance in a practice session outside of the MRI scanner

environment and a short practice run inside the scanner. The grating

subtended a visual angle of 3�, it was presented 1� below and 2� to the

left or right of fixation and could be oriented either horizontally (95�
orientation) or vertically (5� orientation). In order to drive subjects to

allocate all attentional resources to the side indicated by the attention

cue, the grating was presented briefly (50 ms) and embedded in

uniform noise (60% contrast, noise was only present during stimulus

presentation). Subjects were instructed to quickly and accurately judge

the grating orientation when it appeared in the attended hemifield and

report it by pressing 1 of 2 keys of a button box with their right hand.

Visual stimuli were generated using MATLAB 7 (MathWorks, Natick,

MA) in conjunction with the Psychophysics Toolbox (Brainard 1997)

and displayed on a rear-projection screen using an EIKI projector

(1024 3 768 resolution, 60 Hz refresh rate).

Eye Movement Recording
To verify that subjects maintained fixation on the central fixation point

throughout the trial, we monitored subjects’ eye movements using an

infrared eye tracking system in the scanner (Sensomotoric Instruments,

Berlin, Germany). We recorded eye movement data for 8 subjects (of

the 17 subjects included in the final analyzed sample), which we

checked for systematic differences in eye movements between

conditions; we analyzed the difference between mean pupil positions

500 ms after and 500 ms before stimulus onset for each trial in analyses

of variance (ANOVAs), including stimulus location, attention, and

prediction as factors. We used separate ANOVAs to analyze vertical and

horizontal deviations from fixation. In terms of behavioral results in the

main experiment, these subjects were representative for the group,

with no significant differences in terms of accuracy (2-sample t-test,

t15 = 0.08, P = 0.93) and reaction times (t15 = 0.47, P = 0.65) between

subjects with and without eye tracking.

fMRI Acquisition Parameters
Functional images were acquired using a 3-T Trio MRI system (Siemens,

Erlangen, Germany), with a T2*-weighted gradient-echo echo-planar

imaging sequence (time repetition [TR]/time echo [TE] = 1950/30 ms,

Figure 2. Schematic overview of the joint effects of attention (precision) and prediction on prediction error. (A) Depending on the context, a physically identical stimulus can
match an observer’s predictions to different degrees. The prediction error is the mismatch between predicted and actual input. Here, we sketch hypothetical prediction error
responses to physically identical stimuli, preceded by either a valid (green) or an invalid (red) prediction cue. The amplitudes of the responses were chosen arbitrarily. (B)
According to recent models of perceptual inference (Rao 2005; Friston 2009; Feldman and Friston 2010), attention increases the precision of predictions. Statistically, this means
that subsequent prediction errors will be weighted more strongly, since optimal inference involves weighting data in proportion to their precision. Mechanistically, this might be
implemented by increasing the postsynaptic gain of neurons reporting unexplained sensory data (prediction error). This enhancement of precision by attention occurs in relation to
current predictions, reflected here by the fact that attention hardly increases precision when no stimulus is predicted to occur. Mechanistically, this might mean that attention
increases the postsynaptic gain of only those prediction error neurons that receive their inputs from neurons that are ‘‘primed’’ by the current predictions. The order of magnitude
of the precision values displayed here was based on figures in Feldman and Friston (2010), the exact values were chosen arbitrarily, and their evolution over time was simplified.
(C) Prediction errors are weighted by their precision, calculated here as a simple multiplication of prediction error (panel A) and precision (panel B). The fact that attention
enhances precision in relation to current predictions leads to an interactive effect of prediction and attention on the amplitude of the prediction error response.
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31 slices, voxel size 3 3 3 3 3 mm, interslice gap 20%). Anatomical

images were acquired with a T1-weighted magnetization prepared rapid

gradient-echo (MP-RAGE) sequence, using a GRAPPA acceleration

factor of 2 (TR/TE = 2300/3.03 ms, voxel size 1 3 1 3 1 mm).

fMRI Data Analysis
We used SPM5 (http://www.fil.ion.ucl.ac.uk/spm, Wellcome Trust

Centre for Neuroimaging, London, UK) for image preprocessing and

analysis. The first 4 volumes of each subject’s data set were discarded to

allow for T1 equilibration. All functional images were spatially realigned

to the mean image, yielding head movement parameters, which were

used as nuisance regressors in the general linear model (GLM), and

temporally aligned to the first slice of each volume. The structural

image was coregistered with the functional volumes. For retinotopic

analyses, structural and functional images were not normalized to

Montreal Neurological Institute (MNI) space, and functional images

were spatially smoothed with a full-width at half-maximum (FWHM) of

4 mm. To enable whole-brain analysis at the group level, structural

images were spatially normalized to a MNI T1 template. Coregistration

allowed the same transformation matrix to be used to spatially

normalize the functional volumes to MNI space. Finally, the functional

volumes were spatially smoothed with an isotropic Gaussian kernel

with a FWHM of 8 mm.

Statistical analysis was performed in 2 stages. In the first stage, the

data of each subject were modeled using an event-related approach,

within the framework of the GLM. Regressors representing the

different attention cues and stimuli were constructed by convolving

cue and stimulus onsets with a canonical hemodynamic response

function and its temporal derivative (Friston et al. 1998). Cues and

stimuli appearing in trials in which subjects failed to respond to

a relevant stimulus, or responded to an irrelevant one, were included as

regressors of no interest, as were head motion parameters and their

first-order derivatives (Lund et al. 2005). Finally, the data were high-

pass filtered (cutoff 128 s) to remove low-frequency signal drifts.

The resulting parameter estimates for cue and stimulus regressors

comprised the data for the second-level analysis. Effects of interest

were specified using linear contrasts. For whole-brain analysis,

statistical inference was performed using a corrected cluster threshold

of P < 0.05, on the basis of a threshold of P < 0.001 at the voxel level.

Retinotopic Analysis
We performed retinotopic mapping to identify the boundaries of

retinotopic areas in early visual cortex using well-established methods

(Sereno et al. 1995; DeYoe et al. 1996; Engel et al. 1997). Subjects

viewed a wedge, consisting of a flashing checkerboard pattern (3 Hz),

first rotating clockwise for 9 cycles and then anticlockwise for another

9 cycles (at a rotation speed of 23.4 s/cycle). Freesurfer (http://

surfer.nmr.mgh.harvard.edu/) was used to generate inflated represen-

tations of the cortical surface from each subject’s T1-weighted

structural image and to analyze the functional data of the retinotopic

mapping session. Fourier-based methods were used to obtain polar

angle maps of the cortical surface, on the basis of which the borders of

visual areas (dorsal and ventral V1, V2, and V3 in both hemispheres)

could be defined for each subject (Sereno et al. 1995). These

retinotopic maps were used to create regions of interest (ROIs) using

MarsBaR (http://marsbar.sourceforge.net/).

Within each retinotopic ROI, we identified responsive and un-

responsive voxels by selecting voxels according to their response to

the grating stimulus (using the contrast ‘‘stimulus left > stimulus right’’

for ROIs in the right hemisphere and ‘‘stimulus right > stimulus left’’ for

ROIs in the left hemisphere, for a similar approach, see, e.g., Bueti et al.

2010). Responsive voxels were defined as those above the 80th

percentile of t values for the relevant contrast, with a threshold of

t > 1.65 (approximately P < 0.05), while unresponsive voxels were

those below the 20th percentile of absolute t values, with a threshold of

jtj < 0.5. This yielded 2 ROIs for each visual area, one containing

responsive voxels and one containing unresponsive voxels. MarsBaR

was used to extract parameter estimates for cue and stimulus

regressors from each ROI, for each subject. Prior to group-level

analyses, data were collapsed across hemispheres.

In order to investigate whether effects of prediction changed over

the course of a prediction block, as a result of potential bottom-up

learning effects or switch costs, we created models of each subject’s

fMRI data in which each condition was represented by 2 separate

regressors; one for trials occurring in the first half of a block and one for

trials in the second half of a block. As a potentially more sensitive

analysis, we also created models which included ‘‘time’’ (i.e., position of

a trial within a prediction block, 1--8) as a linear parametric modulator.

Also in these models, each condition was represented by 2 regressors,

one modeling the blood oxygen level--dependent (BOLD) response

evoked by the appropriate stimuli and the other its parametric

modulation by time.

Dynamic Causal Modeling
In order to investigate the effects of prediction and attention on the

dynamics within and between early visual areas, an effective

connectivity analysis using Dynamical Causal Modeling (DCM; Friston

et al. 2003) was performed. In DCM, the states of multiple interacting

brain regions are modeled at the hidden (i.e., not directly observed

with fMRI) neuronal level and combined with a hemodynamic

forward model. A Bayesian estimation scheme is used to estimate

a combined neuronal and hemodynamic parameter set, such that the

modeled BOLD signals are maximally similar to the measured BOLD

signals (Friston et al. 2003). The neuronal parameter set consists of

3 subtypes: driving inputs (i.e., the direct influence of stimuli on activity

in a region), the fixed connectivity between regions (in the absence of

experimental modulations), and the modulation of connectivity by

experimental factors. Our system of interest consisted of early visual

areas V1, V2, and V3, individually defined for each subject as the

stimulus-responsive voxels in V1, V2, and V3, respectively, separately

for the left and right hemisphere. The DCM analysis was therefore

performed on the same voxels as the main analysis. Time series for each

ROI were extracted as the principal eigenvariate across all voxels

within the ROI, separately for the first and the second session of the

experiment. The time series were adjusted for movement parameters

and other regressors of no interest, retaining just the effects of interest

evoked by the experimental manipulations. For each subject, separate

models were made for both hemispheres and both experimental

sessions. The driving input to the system was determined by a regressor

containing the onsets of all predicted and unpredicted stimuli

contralateral to the hemisphere being modeled. We defined 2 modula-

tory influences: 1) prediction in the absence of attention and 2)

prediction in the presence of attention, determined by regressors

containing the onsets of all stimuli appearing in the unattended and the

attended hemifield, respectively. To capture the effects of prediction,

these regressors were parametrically modulated by the likelihood of

the stimulus (25%, 50%, or 75%). In our models, all 3 regions were

reciprocally connected to each other, and each region had an

inhibitory self-connection (modeling the intrinsic decay of neuronal

activity; Friston et al. 2003). Five different models were tested, differing

in which connections the 2 factors were allowed to modulate (for

a graphical depiction of the models, see Supplementary Fig. S3). In

model A (the ‘‘full model’’), both factors were allowed to modulate all

connections between regions and each region’s self-connection. Self-

connections model the decay of neuronal activity and are therefore

suitable to model effects related to prediction error; a larger prediction

error is assumed to take longer to resolve. In model B, both factors

were allowed to modulate only interregional connections. In the other

3 models, both factors were allowed to modulate V1’s self-connection,

and the forward connections (from V1 to V2 and V3 and from V2 to V3)

were modulated by (C) neither factor, (D) both factors, and (E) only by

‘‘prediction in the presence of attention.’’ The particular choice of the

3 models with modulation of forward connectivity had a principled

motivation. If attention indeed results in increased precision of

predictions (and therefore increased weighting of prediction errors),

prediction error units in V2 and V3 should become more sensitive to

bottom-up sensory information. In terms of our DCM, this would be

expressed as an attention-dependent modulation of forward connec-

tivity when, and only when, subjects predicted stimuli in these sensory

channels. Each of these models was specified for both hemispheres and

both experimental sessions, yielding 5 3 2 3 2 models for each subject.
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After Bayesian estimation of all parameters of the DCMs, we summed

the negative free-energy approximation to the log model evidence

(Stephan et al. 2009) for the 2 experimental sessions, yielding one

value per hemisphere for each of the 5 different models per subject.

These free-energy values were subsequently entered into a random-

effects Bayesian Model Selection (BMS) at the group level (Stephan

et al. 2009), separately for both hemispheres. This analysis yields

Dirichlet distribution parameters, describing the probabilities for each

model considered. These conditional model probabilities can then be

used to calculate exceedance probabilities: The probability that a given

model is more likely than any other model considered, given the data.

Since our main prediction pertained to the effects of prediction and

attention on self-connections, we used random-effects family level

inference (Penny et al. 2010) to compare the family of models including

these connections (models A and C--E) to the model not including them

(model B). Subsequently, we applied Bayesian Model Averaging (Penny

et al. 2010) to the winning family of models, in order to obtain

evidence-weighted parameter estimates for connectivity modulations,

per subject, session, and hemisphere. These parameter estimates were

averaged over sessions and tested for significance at the group level

through 1-sample t-tests, separately for the 2 hemispheres.

Results

Behavioral Results

Subjects successfully responded to virtually all stimuli appearing

in the attended visual field and ignored virtually all stimuli

appearing in the unattended field (response rates were 95.5%

and 2.6%, respectively), indicating that the attention cue

effectively manipulated the task relevance of stimuli. These

percentages were not affected by the prediction cue (all P >

0.10, Supplementary Table S1), suggesting that we successfully

isolated prediction and task relevance behaviorally. While the

prediction cue did not significantly alter accuracy on the

orientation identification task (87.3% correct, Supplementary

Table S1), subjects did respond faster to predicted stimuli (mean

reaction time [RT] = 806 ms) than to unpredicted stimuli (mean

RT = 850 ms; t16 = 3.164, P = 0.006) and stimuli preceded by

a neutral cue (mean RT = 839 ms; t16 = 4.220, P < 0.001;

Supplementary Table S1).

A sensitive fixed-effects analysis revealed no significant

differences in eye movements between conditions (stimulus

location, attention, and prediction) in terms of either horizon-

tal (F11,4666 = 0.552, P = 0.869) or vertical (F11,4666 = 0.605,

P = 0.826) eye movements.

fMRI Results

Analyses of stimulus-evoked activity in early visual cortex

(Fig. 1E) revealed a clear interactive effect of prediction and

attention on stimulus processing (Fig. 3A; compare Fig. 1B), as

opposed to 2 opposing main effects (Fig. 1A). Stimuli that

appeared on the unattended side evoked a reduced response

when they were predicted (75% likely) compare with when

they were unpredicted (25% likely; t16 = 2.40, P = 0.029) in

primary visual cortex (V1), as predicted by predictive coding

models. This difference was not observed (significantly) in V2

(t16 = 1.55, P = 0.139) and V3 (t16 = 1.01, P = 0.327). On the

other hand, stimuli that appeared on the attended side evoked

a larger response in the early visual areas when they were

predicted compared with when they were unpredicted (V1:

t16 = 2.25, P = 0.039; V2: t16 = 1.96, P = 0.067; V3: t16 = 2.67,

P = 0.017). This reversal of prediction-related suppression by

attention is consistent with a synergistic boosting of precision

by attention and prediction. To test whether these effects were

specific to neural regions involved in encoding the stimulus or

reflect general activity modulations, we performed the same

analyses for stimulus-unresponsive voxels in V1--V3 (for details,

see Materials and Methods). No significant effects of attention

and prediction were observed in stimulus-unresponsive regions

(all P > 0.10, Supplementary Fig. S4A). We also tested whether

these effects were stable or changed over the course of

a prediction block, as a result of potential bottom-up learning

effects or switch costs. We did not find any evidence for

changes of the effect of prediction over the course of a block

(Supplementary Figs S1 and S2), that is, the effects of prediction

within a block were stable.

Since predictive coding theories state that the response in

sensory cortex is largely determined by the violation of

predictions, it may be expected that the failure of a predicted

stimulus to appear would similarly evoke a response (pre-

diction error) in the relevant sensory cortex, even though no

Figure 3. Stimulus-related activity in early visual cortex. (A) In the unattended visual
field, predicted stimuli evoked a reduced response in V1 compared with unpredicted
stimuli. In the attended field, predicted stimuli evoked a larger response in V1, V2,
and V3 than unpredicted stimuli. (B) In visual cortex corresponding to the visual field
where no stimulus appeared, that is, ipsilateral to the stimulus, unpredicted omission
of a stimulus in the attended visual field evoked a larger response in V1, V2, and V3
than predicted omission of a stimulus. Error bars indicate standard error of the mean
(*P\ 0.05, **P\ 0.01, y0.067).
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physical stimulus is presented (den Ouden et al. 2009).

Additionally, if attention indeed increases the precision of

predictions, this effect may be particularly prominent when the

visual location at which the stimulus was predicted to appear

was attended as well. Therefore, we investigated responses in

early visual cortex ipsilateral to the stimulus, that is, corre-

sponding to the visual field location where no stimulus

appeared (Fig. 3B) as a function of attention and prediction.

Indeed, unpredicted omission of a stimulus in the attended

visual field evoked a larger response in visual cortex

contralateral to the attended hemifield than a predicted

omission, in all 3 visual areas (V1: t16 = 2.99, P = 0.009; V2:

t16 = 2.79, P = 0.013; V3: t16 = 2.90, P = 0.010), while there were

no significant differences between predicted and unpredicted

omissions in the unattended visual field (V1: t16 = 1.52,

P = 0.148; V2: t16 = 1.25, P = 0.229; V3: t16 = 0.96, P = 0.353).

Again, the specificity of these effects was tested by performing

the same analyses for stimulus-unresponsive voxels: No effects

of prediction on the omission of stimuli were found in either

the attended or the unattended hemifield (all P > 0.10,

Supplementary Fig. S4B).

Predictive coding accounts of prediction and attention

(Feldman and Friston 2010) posit that predictions operate by

silencing the prediction error within a cortical unit. Attention

reverses this effect by boosting the precision of prediction

errors, heightening the impact the region has on downstream

regions. To test this hypothesis more directly, we carried out

an analysis of interregional directed interactions using DCM

(Friston et al. 2003) (for details, see Materials and Methods).

We defined several models, differing in which connections

were modulated by attention and prediction (see Supplemen-

tary Fig. S3 and Materials and Methods). For both hemispheres,

the most appropriate model, as determined by BMS (Stephan

et al. 2009) and family level inference (Penny et al. 2010),

contained modulatory influences of prediction on the self-

connection of V1, while the model in which prediction did not

modulate this connection (model B) performed the worst

(Supplementary Tables S2 and S3). In the absence of attention,

prediction modulated V1’s self-connection negatively (result-

ing in faster decay of stimulus-evoked activity), while pre-

diction in the presence of attention positively modulated this

connection (Supplementary Table S4 and Fig. 4). Model

selection results were somewhat inconclusive with regard to

the modulation of feedforward connections (Supplementary

Table S2). We therefore applied Bayesian Model Averaging

(Penny et al. 2010) to collapse all the models that included the

modulation of V1’s self-connection (i.e., the ‘‘winning’’ family,

see Supplementary Table S3) together. As expected, the

modulation of V1’s self-connection by prediction in both the

absence and the presence of attention was significant in both

hemispheres, in these averaged models. Additionally, feedfor-

ward connections (from V1 to V2 and V3 and from V2 to V3)

were significantly strengthened by prediction in the presence

of attention, in both hemispheres (Supplementary Table S4).

Note that these connectivity results are consistent with the

finding that the effects in the attended hemifield were present

in V1 through V3, while the effects of prediction in the

unattended hemifield were significant only in V1 (Fig. 3A,B). In

sum, DCM provided strong evidence for an interactive effect of

prediction and attention on the self-connection of V1 and

indications of an increase of feedforward connectivity by

prediction in the presence of attention (Fig. 4).

In order to disentangle effects related to stimulus processing

from cue-induced baseline shifts (which may only reflect

a general state of preparedness rather than processing of

prediction error per se), we also looked at BOLD signals time

locked to the attention cues. We were able to do this because

we modeled cues and targets separately in our event-related

design. The experiment was designed in order to be able to

separately estimate neural responses to cue and stimulus by

introducing a variable delay interval between attention cues

and stimuli (Fig. 1C,D, see Materials and Methods). We

quantified the effect of the attention cue on prestimulus

activity in early visual cortex by comparing neural activity

between attended and unattended hemifields (Fig. 5A). Indeed,

we observed prestimulus attentional enhancement effects, in

line with previous studies on visual spatial attention (Luck et al.

1997; Kastner et al. 1999; Silver et al. 2007; Murray 2008).

These effects were spatially specific: Voxels in early visual

cortex that were unresponsive to the grating stimuli showed

no prestimulus increase in activity by attention (all P > 0.10;

Fig. 5A). Interestingly, this prestimulus attentional modulation

was strongest when attention and prediction were incongruent

(V1--V3, all P < 0.03; Fig. 5B), possibly reflecting increased

reorienting of attention (Yantis et al. 2002) at the time of the

attention cue, when the prediction cue had indicated the

opposite hemifield compared with when the prediction

cue indicated the same hemifield as the attention cue. The

fact that prestimulus activity revealed a different pattern

compared with stimulus-evoked activity further suggests that

our primary result of the interaction between attention and

prediction was specific to processing of prediction error itself,

which is time locked to the onset of stimulus presentation.

While our report focuses on the synergistic relationship of

prediction and attention in early sensory cortex, for the sake of

completeness, we additionally performed more exploratory

whole-brain analyses. The results of these analyses can be found

in Supplementary Tables S5 and S6 and Figures S5 and S6.

Figure 4. Modulation of neural dynamics in early visual cortex by prediction and
attention. In the absence of attention, prediction negatively modulates V1’s self-
connection, causing stimulus-evoked activity to decay faster, possibly reflecting faster
resolution of prediction error. However, in the presence of attention (right panel),
prediction positively modulates V1’s self-connection, causing activity to decay more
slowly, consistent with a stronger weighting of prediction error. In addition, prediction
and attention together strengthen the forward connections from V1 to V2 and V3 and
from V2 to V3. Parameter values shown here were averaged over the left and right
hemispheres; see for all parameters values and their statistical significance, Supplementary
Table S4.
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Discussion

Predictive coding models of perception (Rao and Ballard 1999;

Friston 2005, 2009; Jehee and Ballard 2009) have become

highly influential in understanding how the brain deals with

sensory inputs. However, these models have been challenged

by reports of increased neural responses to predicted stimuli

that are task relevant (Koch and Poggio 1999). Here, we

provide empirical support for a predictive coding model

wherein attention boosts the precision of predictions (Rao

2005; Friston 2009), leading to heightened weighting of

sensory evidence (prediction error) and a reversal of the

silencing effect of prediction.

Attention Reverses the Silencing Effect of Predictions on
Sensory Signals

When stimuli were unattended, the neural response to

predicted stimuli was reduced in early visual cortex (Fig. 3A)

compared with unpredicted stimuli. This reduction in activity

was significant in V1 but not in V2 and V3, suggesting that this

silencing can take place at the earliest stage of the cortical

hierarchy, precluding further forward propagation of the

predicted sensory input through the cortical hierarchy. The

reduction of activity for unattended predicted stimuli is in

line with previous studies reporting reduced neural responses

to task-irrelevant predicted stimuli (den Ouden et al. 2009;

Alink et al. 2010; den Ouden et al. 2010) and consistent with

theoretical models of predictive coding (Rao and Ballard 1999;

Friston 2005; Jehee and Ballard 2009). Predictive coding

theories propose that (top-down) predictions and (bottom-

up) sensory data are coded for by separate neuronal

populations within cortical areas. Sensory data consistent with

current predictions are inhibited, leading to remaining activity

in sensory units (prediction error) representing discrepancies

between current predictions and actual inputs, that is, that part

of the sensory input not accounted for by current predictions.

Accordingly, in these models, a good match between predicted

and actual input (predicted stimuli) results in less neural

activity in sensory units than a mismatch (unpredicted stimuli).

Results of the effective connectivity analysis (DCM) suggest

that prediction (in the absence of attention) negatively

modulated V1’s internal dynamics (Fig. 4), causing stimulus-

evoked activity to decay faster. This may reflect faster

resolution of prediction error within V1, consistent with

recent computational models of predictive coding (Spratling

2008, 2010).

A different pattern of results was observed for attended

stimuli. When stimuli were attended, the neural response in

early visual cortex was larger in amplitude (Fig. 3A) for

predicted compared with unpredicted stimuli. This is in-

consistent with an explanation in terms of opposing main

effects of prediction and attention (Fig. 1A), but it is consistent

with a synergistic interaction between the 2 (Fig. 1B). An

enhancing effect of prediction may at first glance seem

incompatible with predictive coding theories (Koch and

Poggio 1999), but recent modeling studies have shown that

mechanisms of predictive coding and attention (specifically,

biased competition; Desimone and Duncan 1995; Reynolds

et al. 1999) can comfortably coexist within the same

computational model (Feldman and Friston 2010) and can be

cast as mathematically equivalent under certain assumptions

(Spratling 2008). Recent Bayesian models of perception have

proposed that attention may reflect the precision of perceptual

inference (Rao 2005; Friston 2009; Hesselmann et al. 2010).

Under this account, attention modulates the synaptic gain of

neurons representing sensory data (or, equivalently, prediction

error), causing prediction errors to be weighted according to

the precision of the prediction. A model implementing this

mechanism successfully simulated electrophysiological and

psychophysical correlates of the Posner spatial cueing para-

digm (Feldman and Friston 2010).

Considering attention as a mechanism of modulating the

gain of neurons representing sensory data not explained by

predictive feedback (prediction error) is in good accordance

with our results. When attention and prediction were

congruent, that is, when subjects predicted the stimulus

to appear at the spatial location they were instructed to attend

to, attention increased the precision of the prediction and

weighted the sensory data more strongly, resulting in an

increased response to predicted stimuli when they were

attended compared with when they were unattended

(Fig. 3A). When attention and prediction were incongruent,

however, subjects did not predict the stimulus to appear at the

spatial location they were attending to, and attention could

therefore not boost the precision of the sensory prediction.

This notion is also corroborated by the fact that the response to

unpredicted stimuli was not different depending on whether

Figure 5. Prestimulus attentional enhancement in early visual cortex. (A) Attention
led to a prestimulus increase in activity in contralateral visual cortex, only in stimulus-
responsive voxels. Error bars indicate standard error of the mean (SEM) (*P\ 0.01,
**P\ 0.001). (B) An interaction between attention and prediction in attention cue--
related activity: The increase in activity in early visual cortex contralateral to the
attended visual field was strongest when the attention cue was incongruent with the
prediction cue. Error bars indicate SEM (*P\ 0.05).
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they were attended or unattended (Fig. 3A compare red bars).

So it seems that the enhancement of sensory data by attention

was contingent upon the prediction that a stimulus would

appear at the attended location, leading to a larger response for

attended stimuli when they were predicted than when they

were unpredicted, despite the larger mismatch between

sensory inputs and prediction in the latter case. Mechanisti-

cally, this contingency might reflect that attention increases

the postsynaptic gain of only those prediction error neurons

that receive their inputs from neurons that are ‘‘primed’’ by the

current predictions.

If the increased response to predicted stimuli in the attended

visual field was indeed established through the same mechanism

that underlies the reduced response to predicted stimuli in the

unattended field (i.e., prediction error), we would expect the

same intra- and/or interregional connections to be modulated in

both cases. Indeed, we found that prediction modulates the

internal dynamics within V1 (silencing of prediction error), and

this internal modulation is reversed by attention (Fig. 4), causing

activity to decay more slowly, consistent with a stronger

weighting of prediction error as a result of increased precision.

In addition, DCM results suggested that attention strengthened

the impact of the sensory input, by enhancing the forward drive

of information from V1 to V2 and V3 and from V2 to V3. This

causes the excitatory effect of prediction and attention to be

propagated up the hierarchy, while the inhibitory effect of

prediction in absence of attention is not propagated and

confined to the primary visual cortex (see Fig. 3A). Similar

feedforward effects of attention have previously been observed

using electroencephalography (Zhang and Luck 2009). This

appears an optimally efficient coding scheme for both amplifi-

cation of relevant information and silencing of predicted

irrelevant information.

Interestingly, the framework outlined above also provides an

explanation for the increased activity in response to the

unpredicted omission of a stimulus in the attended visual field

(Fig. 3B). Here, attention and prediction together led to

a strong and precise prediction of a stimulus appearing at this

visual field location, and the violation of this prediction resulted

in prediction error activity, even when no stimulus was present

(den Ouden et al. 2009; Todorovic et al. 2011). The fact that

this prediction error response was present in all 3 early visual

areas (Fig. 3B) is consistent with the strengthening of forward

connections by attention and prediction together, as suggested

by DCM.

Can our findings be explained by attentional modulations

alone? For instance, could it be that the increased response to

unpredicted unattended stimuli compared with predicted un-

attended stimuli is the result of increased stimulus-driven

attention to unpredicted stimuli? This explanation is hard to

reconcile with the increased neural response to the unpredicted

omission of a stimulus in the attended field, since stimulus-driven

attention in this case would be engaged by the stimulus appearing

in the unattended field, and not by the absence of a stimulus in

the attended visual field. Additionally, in our experiment, the

visual onset of both the predicted and the unpredicted un-

attended stimuli was irrelevant, and there was no difference

between the stimuli in terms of bottom-up salience (which would

cause bottom-up attention to be attracted more strongly).

Another potential alternative explanation of the reduced

response to predicted unattended stimuli is that the unattended

visual field was suppressed more strongly when a distracting,

irrelevant stimulus was likely to appear there than when such

a distractor was unlikely. By this account, our results could be

explained by 2 top-down attentional mechanisms: enhancement

of relevant signals and suppression of distractors (Gazzaley et al.

2005). While this may partly explain our obtained results, it

seems not fully consistent with it. First, distractor suppression

cannot explain the increased response evoked by the unpre-

dicted omission of a stimulus in the attended field, since 1)

suppression should not occur for the task-relevant visual

location and 2) in this case, there is no stimulus to suppress at

this location. Also, whereas predictions in the presence of

attention affected activity in and feedforward drive to all early

visual regions (V1--V3), the prediction--modulation for unat-

tended stimuli was only significant in V1. In contrast to this, the

effects of top-down attention usually increase when progressing

up the cortical hierarchy (Kastner et al. 1998; Bles et al. 2006;

Buffalo et al. 2010).

In sum, while an explanation in terms of stimulus-driven or

top-down attentional mechanisms does not seem fully consis-

tent with our results, we cannot rule out such an interpretation

on the basis of the current data alone.

Finally, since predicted stimuli, by definition, occurred more

often than unpredicted stimuli, one may wonder whether our

activity differences could be simply due to low-level sensory

adaptation. This is particularly relevant since prediction was

manipulated in blocks (of 8 trials) and not on a trial-by-trial

basis. However, this explanation appears highly unlikely. First,

the interstimulus interval was relatively long (4--6 s), and

sensory adaptation effects in visual cortex appear absent at the

time intervals used in the present study (Nelson 1991; Boynton

and Finney 2003). More crucially, the fact that prediction had

opposite effects on the amplitude of the neural response to

a stimulus depending on attention is not compatible with an

explanation of our results in terms of general low-level

adaptation. However, future work would be necessary to

conclusively rule out such an explanation, by varying both

attention and prediction on a trial-by-trial basis.

Our results suggest that unexplained sensory signals (pre-

diction errors) are weighted by their precision, a notion that is

well in line with studies on the role of uncertainty in decision-

related neural signals (Behrens et al. 2007; Kiani and Shadlen

2009). For example, Kiani and Shadlen (2009) showed that the

neural activity in decision-related lateral intraparietal cortex

(LIP) neurons increases with certainty about perceptual

choice. In another recent study, Behrens et al. (2007) showed

that prediction errors are weighted more strongly when they

are more informative about future reward likelihood (i.e., in

a volatile environment), as reflected by both behavior and

activity in the anterior cingulate cortex (ACC). The current

study deals with activity modulations in the early sensory

regions that are presumably accumulated by downstream

decision-related regions like LIP and ACC. Therefore, while

our results relate to precision in the sensory signal rather than

the decision signal, they are consistent with these studies (e.g.,

attended and predicted stimuli lead to high sensory precision,

putatively leading to larger decision-related activity in areas like

LIP, as evidenced by Kiani and Shadlen 2009).

Conclusion

Predictive coding has become a highly influential theory of

perceptual inference in the last decade (Rao and Ballard 1999;
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Friston 2005, 2009) but has been challenged by the observation

that prediction enhances rather than reduces neural responses

to task-relevant stimuli (Koch and Poggio 1999; for a review,

see Rauss et al. 2011). For example, 2 recent studies found

opposite effects of predictability of a visual stimulus on neural

activity in early visual areas (Doherty et al. 2005; Alink et al.

2010). Notably, the stimulus was task relevant in the former

but irrelevant in the latter study. Recent theoretical work on

predictive coding offers a resolution of this problem, by

suggesting that prediction and attention work together syner-

gistically to improve the precision of perceptual inference

(Friston 2009; Feldman and Friston 2010). Our results provide

empirical support for this framework by showing that attention

reverses the sensory silencing effects of prediction and may

thereby explain the seemingly contradictory findings in the

literature regarding the effects of prediction on neural activity

(Rauss et al. 2011).

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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