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ABSTRACT 

We disagree with Rahnev and Denison that optimality should be abandoned altogether. Rather, we argue 

that adopting a normative approach enables researchers to test hypotheses about the brain’s 

computational goals, avoids just-so explanations, and offers insights into function that are simply 

inaccessible to the alternatives proposed by Rahnev and Denison.  
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While we concur with Rahnev and Denison (2018) that proving the optimality of human behavior should 

never be a goal in and of itself, we disagree that optimality should be discarded altogether. Rather, we 

argue that an ideal observer approach is the only valid approach for understanding the nature of the 

computational problems that the brain is trying to solve (Marr, 1982). 

Understanding the brain’s computational goals is key to understanding human behavior. Knowing what 

the system is trying to do, and why, can inform hypotheses about the algorithms that the brain uses to 

achieve these goals, and how these algorithms are implemented in neurons and connectivity (see Marr, 

1982). To test computational theories, researchers typically translate its hypotheses into predictions that 

can be compared against human data. While this translation can take many forms, we argue that the best 

recipe for converting computational goals into predictions is provided by the normative approach, 

because this approach correctly specifies what kind of behavior participants ought to display under the 

hypothesized goals. For any other description, the translation from hypothesis into prediction may be 

imprecise, making it impossible to determine whether the hypothesis or rather its translation was 

incorrect, when predicted behavior fails to match human data.  

Consider, for example, visual orientation perception. Human orientation perception tends to be biased 

towards vertical and horizontal (cardinal) orientations, such that a tilted (oblique) stimulus appears 

slightly more cardinal than it really is (Tomassini, Morgan, & Solomon, 2010). In a seminal study, Girshick 

and colleagues (2011) hypothesized that such biases arise because observers, when judging stimulus 

orientation, use knowledge about the distribution of orientations in the natural environment (where 

cardinal orientations are predominant). To address this hypothesis, the authors presented human 

participants with random orientation stimuli, asking them to estimate the orientations they had seen. 

Girshick et al. (2011) then specified the behavior of an ideal observer who combines noisy sensory 

measurements of a stimulus with knowledge about its prior probability. By using this approach to model 

human behavior, the authors were able to characterize the prior beliefs about orientation that the 

participants applied in their perceptual estimates. Interestingly, this prior distribution resembled the 

actual distribution of orientations in the environment, corroborating the theoretical predictions.  

This study nicely illustrates how the ideal observer framework can be exploited to not only describe, but 

also explain behavior, by starting with a specific hypothesis about what the system is trying to do 

(minimizing perceptual error in a natural environment by taking into account natural orientation statistics), 

and translating this hypothesis into a computational model that predicts behavior. Precisely because 

human behavior matched that of the ideal observer, rather than some arbitrary formulation, the findings 

provided strong evidence for the computational theory, and offered insights into function that are simply 

inaccessible to the non-normative alternatives (e.g., ‘bag of tricks’ or ‘neural network models’, p. 54) 

proposed by Rahnev and Denison.  

Note that in the example discussed above, human behavior was, in fact, suboptimal for the experimental 

situation in which the participants were tested: when presented with a uniform distribution of orientation 

stimuli, it would make little sense for an observer to show biased judgments towards vertical or horizontal 

orientations. Yet, the ideal observer framework enabled the researchers to address what kinds of 

knowledge the observers did bring to the task, by comparing human task behavior against that of an ideal 

observer using prior knowledge of the orientation statistics of the natural environment.  

We argue that it is precisely these kinds of situations that are informative. The ideal observer framework 

provides a powerful tool to implement hypotheses, and as such, offers insight into the knowledge and 



goals that a human observer brings to the task at hand. When human behavior does not conform to the 

theory’s predictions, one should rather conclude that the theory makes incorrect assumptions about the 

computational goals of the system and try to improve the theoretical assumptions, instead of refuting the 

normative tools that merely implemented the theory.  
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