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The Cost of Precision in a Rate Coding Model in the Appendix). 
Secondly, spikes can be expensive metabolically. In one estimate, 
spike generation and transmission consume nearly half of a cell’s 
metabolism when all the costs are taken into account (Attwell and 
Laughlin, 2001; Lennie, 2003).

Specialized interpretations of the spike code have been made, 
for example that action potentials literally signal Bayesian statistics 
(Ma et al., 2006). In contrast, our hypothesis is that the cortex’s cell 
firing patterns comprise a more rapid generic message sending 
strategy that can appear Poisson at the single cell level. We describe 
such a way that the cortex may use timing in spike codes, that has 
advantages for both understanding signaling as well as cortical 
plasticity. Most importantly, our code can reproduce experimental 
“rate” measurements.

SparSe Coding ModelS of CortiCal CellS
A general way that cortical neurons can be characterized is in terms 
of their receptive fields. Collections of these can be interpreted 
mathematically as a library of functions, termed basis functions, 
that can encode any signal in terms of a sum of pairwise products 
of the basis functions and associated coefficients. Thus, a vector of 
sensory or motor data values distributed over a space x, I(x), may 
be approximated with N such functions using:
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1 introduCtion
Although individual visual cortical neurons exhibit deterministic 
spiking in special instances, e.g., during sleep cycles (Drestexhe 
and Sejnowski, 2001), for the most part they exhibit predict-
ably random spiking behavior that can be modeled closely as 
a Poisson process (Softky and Koch, 1993) with baseline rates 
that have been shown to correlate with experimental parameters 
in hundreds of experiments. Because of this extensive data set, 
it often is taken for granted that a neuron’s basic function is to 
communicate a scalar parameter by the spike rate. Nonetheless 
there is reason to be dissatisfied with this stance. Typical firing 
rates of individual cells are low, in the range 10–100 Hz, whereas 
motor responses to visual stimuli in the form of saccades can be 
as fast as 100 ms (Kirchner and Thorpe, 2006). This means that 
the communication of rate is unrealistically slow if it depends on 
individual cells. For this reason the classical approach to explain 
how fast behavioral responses are possible has used population 
codes (e.g., Georgopoulos et al., 1986; Averbeck et al., 2006; Chen 
et al., 2006) that interpret the combined output of large numbers 
of cells as a faster and more accurate signal. However, using a 
substantial number of cells with each communicating the same 
unary code also seems unsatisfactory (Softky, 1990, 1996). In the 
first place, population codes can be expensive in terms of the 
number of synapses required to support them. Even for modest 
precision and confidence in estimating an analog value such as 
rate, over a 100 synapses can be required for a single input (see 
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A basis function specified by the vector u
i
(x) represents the 

 synapses comprising the receptive field of the i-th neuron, and 
the scalar r

i
 is a coefficient, or strength, that that cell should signal. 

The simplicity of Eq. 1 belies a fundamental implication of this 
model and that is that the component cells’ spikes must be used in 
two different tasks simultaneously, each having different require-
ments. Spikes must firstly be used to help a cell learn its receptive 
field by adjusting the strength of its synapses, and secondly com-
municate the coefficient that codes the receptive field’s portion of 
the stimulus. These two tasks have radically different information 
processing requirements. A cell’s receptive field exhibits long-term 
plasticity and the synapses that compose it are continually being 
adjusted (Bonomano and Merzenich, 1998; Sanes and Donoghue, 
2000). This task is slow and incremental, occurring prominently 
during development, but also in adulthood, and uses aggregates 
of inputs. In contrast, signaling via spikes occurs vary rapidly in 
the course of responding to a stimulus and typically uses just a few 
spikes over a very fast 100∼300 ms timescale. Equation 1 indirectly 
specifies both of these tasks. If the input is an ensemble of data 
samples {I}, the plasticity task is to learn a set of basis functions {u}. 
However, if these basis functions are fixed, as they are assumed to 
be on short time scales, then the task is quickly to signal a specific 
input via an appropriate set of coefficients {r}.

Tremendous progress has been made in developing mathemati-
cal formulations that solve both of these problems in a way that 
explains biological features, such as the orientation distributions of 
simple cells in striate cortex, by adding a term to Eq. 1 that penalizes 
solutions that use many non-zero coefficients (Rao and Ballard, 
1996; Olshausen and Field, 1997; Lewicki and Sejnowski, 2000; 
Bell and Sejnowski, 2003; Rehn and Sommer, 2007). The crucial 
idea is that, in order to minimize some cost, such as metabolic 
energy, the cortex develops many more coding cells that the mini-
mum necessary, so that for any particular stimulus, a small set of 
cells with basis functions specialized for that stimulus suffices. This 
minimal coding strategy is referred to as the sparse coding principle 
and having a surfeit of coding cells characterizes the population as 
being overcomplete. Although the main modeling demonstrations 
illustrating these points have been in the circuitry connecting the 
lateral geniculate nucleus to striate cortex, as we do here, the results 
are indicative of a much more general principle that may extend 
to all of cortex (Rao and Ballard, 1999).

The sparse coding results are important, but so far the major-
ity of models have used abstractions of neurons with signed real 
numbers for outputs, which in turn assume some kind of popula-
tion coding, instead of directly dealing with action potential spikes. 
The crucial issue is: if the cortex is to use a minimal number of 
spiking cells, how are they to communicate analog values? There 
have been several ingenious methods to do so by exploiting timing 
codes (Eliasmith and Anderson, 2003; Eliasmith, 2005; Joshi and 
Maass, 2005; Lazar, 2010), but these methods may be challenged in 
the cortex if several independent computations may be simultane-
ously active (von der Malsburg, 1999). Another possibility is to use 
a rank order code (Perrineta et al., 2004), or its variant, a latency 
code (Shaw, 2004). These methods work for feed forward circuits. 
However, for the cortex’s ubiquitous feedback circuits, one needs 
a more general system that has a common timing reference (e.g., 
Zhang and Ballard, 2004).

a g frequenCy Model
One possible timing resource is the cortex’s rhythmic signals in the 
g range (30–80 Hz). It has been suggested that the cortex might use 
an analog latency with respect to the phase of a g frequency oscilla-
tory signal to do this (Buzsáki and Chrobak, 1995; Fries et al., 2007) 
and recent evidence is in support of this (Vinck et al., 2010). This 
coding strategy is very different from the standard Poisson-based 
population models. Latency temporal coding (Delorme et al., 2001; 
Gollisch and Meister, 2008), when referenced to a g timing signal, 
allows a single spike to communicate an analog quantity in a way 
that is interpretable by both feed forward and feedback circuitry. 
As a further consequence, small subsets of cells can represent a 
stimulus adequately and, crucial to our model, the overcomplete-
ness of cortical representations means that many different subsets 
of cells can communicate the same stimulus. Of course, population 
codes also use different subsets of cells in signaling but the latency 
codes turn out to need orders of magnitude less cells to achieve 
equivalent precision and confidence levels.

Another important consequence of a latency code is that it is 
compatible with spike timing dependent plasticity (STDP; Bi and 
Poo, 1998). STDP specifies that the learning rule for a cell is a 
function of a timing reference. Although the original experiments 
used the timing of a cell’s output spike as a reference, the STDP rule 
could in principle apply to an extracellular reference as assumed 
here. Since STDP effects are based on latencies, a latency code is a 
straightforward way of meeting this requirement.

We have proposed a specific model based on g latencies (Jehee 
and Ballard, 2009). This model proposes that g latencies serve as 
a general base representation for communicating analog values 
in both feed forward and feedback pathways. However, our initial 
studies using this model to learn and use receptive fields abstracted 
away important issues related to representing individual spikes, 
such as a detailed model of latency and the latency code spike 
statistics. The focus of this paper is to address these issues with an 
explicit spike model in a circuit of significant scale. In this paper 
we show, via a number of specific simulations, how the g latency 
code can serve as a general coding strategy and, at the same time, 
can exhibit statistics in individual cells that are very close to those 
of a Poisson model.

The key testable predictions of the model concern properties 
of the latency coding of spikes. If the stimulus is represented by a 
latency code, many repeated applications of the same stimulus, on 
average, should result in the reuse of the same latencies. Thus, the 
distribution of latencies in any neuron, measured with respect to 
the g timing phase, should be highly non-uniform. This prediction 
is in direct contrast to that of a Poisson model, which would pre-
dict a uniform distribution that is independent of any particular g 
reference. A subtler prediction involves the fundamental constraint 
between the spikes of neurons with overlapping receptive fields. If 
only one spike from the overlapping group is sent, then the groups’ 
spikes should not be correlated at short (1∼3 ms) timescales. If 
more than one spike is sent during that period, the component 
latencies would have to have been adjusted accordingly. Neurons 
with non-overlapping receptive fields can be correlated, and in 
fact should be, as the representation of stimuli is still distributed 
across multiple cells, albeit in much smaller groups than needed 
by rate-code models.

Ballard and Jehee Dual roles for spike signaling

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 22 | 2

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


maximization constraint (Dempster et al., 1977) for estimating 
overlapping probability distributions. Its absence leads to double 
counting that results in erroneous receptive fields. Our claim is that 
the observed randomness in spike trains may be a consequence 
of the need to satisfy this constraint, which ensures that receptive 
fields are learned correctly.

 2.2 gaMMa-latenCy Coding
A general way that all cells can signal coefficient information is via g 
latencies, as shown in Figure 2. Each spike communicates numerical 
information by using relative timing (Kirchner and Thorpe, 2006; 
Gollisch and Meister, 2008) where in a wave of spikes the earlier 
spikes represent higher values. This strategy can be used in general 
circuitry, including feedback circuitry, if such waves are referenced 
to the g oscillatory signal (Fries et al., 2007). Spikes coincident with 
zero phase in the g signal can signal large numbers and spikes lag-
ging by a few milliseconds can signal small numbers. The particular 
formula we use to relate the projection r to latency l is given by

 
al r= − log  (2)

where l is the latency value in milliseconds and a is a constant that 
has value 0.9 at 50 Hz.

The assumption of the ubiquitous use of latency coding is that it 
allows numerical data to be propagated throughout the relevant corti-
cal circuitry quickly and, at the same time, owing to the sparseness of 
the code, makes this circuitry relatively insensitive to cross-talk from 
any other spike traffic. Given a set of learned receptive fields, an input 
stimulus initially can be represented by selecting a candidate probabil-
istically from amongst the set of V1 neurons that have receptive fields 
that are similar to the input, subtracting the candidate’s receptive field 
from the input, and repeating this process with the resultant residual 
acting as a new input. The specific algorithm to do this has been 
described in (Jehee et al., 2006), and is based on matching pursuit 
(Mallat and Zhang, 1993). After k basis functions (neurons) have been 
selected, the input from the LGN has been reduced to

2 Methodology
The development of neural receptive fields in the striate cortex has 
received extensive study and has become a standard venue for test-
ing different neural models. Thus, this circuitry provides an ideal 
demonstration site for our very different model of cortical neuron 
coding and signaling. The more abstract version of the algorithm 
has been shown to learn receptive fields in cortical areas V1 and 
MST (Jehee et al., 2006) as well as to account for temporal feedback 
effects from striate cortex to the LGN (Jehee and Ballard, 2009). 
The basic core of the algorithm is recapitulated in Section “The 
Algorithm for Learning Receptive Fields” in the Appendix. Here we 
describe the modifications for keeping track of individual spikes.

What makes the model fundamentally different is its combina-
tion of three interlocking constraints: (1) randomized action poten-
tial selection, (2) variable g latency coding, and (3) multiplexing 
of several different g range frequencies.

 2.1 randoMized aCtion potential SeleCtion
A central constraint on action potential generation concerns neu-
rons with overlapping receptive fields. Two receptive fields are said 
to overlap when the dot product of their normalized receptive 
fields is significant, which we take to be greater than some scaler 
value m. In our simulations most neurons are nearly orthogonal, 
that is, the dot product is less than 0.20. Rather than selecting the 
most similar neuron at each instant, neurons with significantly 
overlapping receptive fields compete to be chosen (Jehee et al., 
2006). In terms of the spike model, when two basis functions over-
lap significantly, they are as a consequence not orthogonal and 
must probabilistically compete to be the one chosen to send a spike 
as shown in Figure 1. The probability of being chosen is given by 
p = e10r/Z where r is the projection, the empirically determined 
scalar 10 weights the largest responders, and Z is a normaliza-
tion factor. In the figure the red circles denote the two compet-
ing responses of the left and right receptive fields for a particular 
input. The probabilistic protocol is dictated by the expectation 

Figure 1 | random action potential spike selection. On each g cycle, only 
one of neurons with overlapping receptive fields can signal. Whether or not a 
neuron sends an action potential is determined probabilistically according to 
the relative projections of the input onto receptive fields. For the two neuron 
example shown, for the particular input shown in red, the odds of the leftmost 
neuron being chosen over the rightmost neuron is given by the ratio of r2 to r1. 
In the case of multiple overlapping receptive fields, the odds are distributed 
appropriately among them.

Figure 2 | g latency code. The action potential of a neuron encodes an 
analog value in terms of a latency(black curve) that is scaled with respect to 
the phase of a particular g frequency (gray curve). The model assumes that 
several different subnetworks can be simultaneously active and that they are 
each distinguished by using a frequency in the g range.
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Consequently, we assume that the latency code can be adjusted 
to reflect the particular frequency used. To handle this we scale 
the value of a by each frequency i.e.,

 
a

g

g
a←

o

where g
o
 is assumed to be 50 Hz. The assumption of multiple fre-

quency latency codes potentially allows multiple independent sets 
numerical data to be propagated throughout the relevant cortical 
circuitry quickly and, at the same time, owing to the sparseness 
of the code, makes this circuitry relatively insensitive to cross-talk 
from any other spike traffic.

3 reSultS
The focus of our simulations is to show that timed circuits that use 
the randomized spike generation protocol send information in a 
very different way than is currently conceived in that the group of 
cells sending the information varies from cycle to cycle. However, 
despite this difference, the spikes in this code can appear to be very 
similar to those generated by a Poisson processes. At the same time, 
the latency code introduces regularities in the spike distributions 
with respect to the g phase that should be detectable.

g latenCy Coding produCeS Conventional orientation tuning 
CurveS
Does this process generate data that describes conventional 
receptive fields? We tested the claim that rival neurons were 
competing in simulation. Neurons whose receptive fields were 
learned with the matching pursuit algorithm that used the con-
ventions of our model were tested on an 8 × 8 simulation by 
using small Gabor image patches as input. The Gabor patches 
were computed using the parameters (wavelength, phase off-
set, bandwidth, aspect ratio) = (2, 0, 1, 1). The wavelength is 
measured in pixels.

Thirty-six Gabor image patches were created, one for every 10° 
rotation. These were then presented to the network 1200 times and 
fit with learned basis functions each time. To emphasize the point 
that the randomized neural selection process models the receptive 
field, we chose two basis functions that overlap and measured their 
receptive fields using their spike counts for the different Gabor ori-
entations. Their histogram data are indicated in Figure 3. The spike 
counts, which in the model reflect the number of times they were cho-
sen probabilistically, are representative of standard oriented receptive 
fields measured experimentally using repeated trials to generate a 
post-stimulus time histogram, even though the model’s process for 
generating spikes is very different from any standard rate-code model.

SiMulationS Showing the randoM routing of the Signal
The Gabor image test shows that a probabilistic selection method 
can produce orientation tuning but does not show off two crucial 
features of the coding method, namely (1) the codings of an image 
patch vary from g cycle to g cycle and (2) they use latency cod-
ing to send a coefficient. These two features are made explicit in 
Figure 4. In this larger 10 × 10 simulation the same image patch is 
fit repeatedly with 12 basis functions for 200 times. The simulation 
essentially assumes that there is no underlying time constant  linking 
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A key assumption in the model concerns the mechanism for 
realizing this equation in neural circuitry. The use of g latency cod-
ing to represent quantities suggests that the process of evaluating 
residuals should be done in one or two g cycles. Otherwise it would 
take too long to represent the input stimulus. For example, since 
each cycle consumes on the order of 20 ms, if it took a cycle for 
each of 10 coefficients, the total time budget would be unrealistic. 
Thus, our model posits that an essential role of lateral connections 
in V1 is to implement the subtraction process shown in Eq. 3 for 
each of the N different component basis functions within one or 
two cycles, and the particular simulations herein assume all the 
subtractions are done within a single g cycle. This is a temporarily 
demanding constraint, nonetheless the requisite circuitry is in place 
to do this (e.g., Martinez et al., 2005). There is not a huge wealth 
of data showing how rapidly cells can communicate in situ, but 
(Crapse and Sommer, 2009), show that the superior colliculus can 
cause spikes in the frontal eye fields within 1–2 ms. Thus one would 
expect that local communication within a cortical area might take 
considerably less time.

Another important constraint is that, in order to be latency 
coded without error, the residual magnitudes need to be gen-
erated in decreasing order. This is usually the case as highly 
overcomplete representations mean that some neuron’s recep-
tive field is close to the residual and thus has a high probability 
of being chosen. This probability can also be tuned by scaling 
b in Eq. 10.

Learning the receptive fields starting from random connections 
is straightforward. At each step, the winning neuron has its receptive 
field made a little more similar to that of the stimulus that resulted 
in its selection. This can be done by moving each receptive field in 
the direction of its residual, i.e., the k-th receptive field changes by

 
∆ ∆u Ii

l

kk

ike= −η α

 
(4)

where h is a scalar learning rate.
This equation shows that the learning of receptive fields can take 

place simply using STDP if both use the same latency code. Since 
(1) ∆u ∝ ∆I, (2) the former is signaled by latencies with respect 
to the g phase, and (3) both the model and experimental data 
use exponential decreases (Bi and Poo, 1998), the adjustment is in 
principle straightforward.

 2.3 g frequenCy band Multiplexing
The g band is a broad range and consequently it would be 
unlikely to expect a single frequency to be chosen and used as 
a “clock.” Indeed elaborate statistical tests for such a clock in 
local cortical field potential data over 2–4 s have been negative 
(Burns et al., 2010). However, it may very well be the case that 
the cortex can have multiple simultaneous computations that 
each use a separate oscillatory frequency in the g range. Indeed 
there are reasons to suspect that this is possible. As noted by 
(Ray and Maunsell, 2010), the observed g frequency scales with 
contrast, so at least the oscillatory frequency can be adjusted. 
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signaling. Since latency code is correlated with the spike rate, the 
rate suggests itself as the primary signaling code, whereas, under the 
latency hypothesis, the rate is just a byproduct of a more efficient 
timing-based code.

The data in Figures 4 and 5 plot only the spikes coding the 
stimulus. No competing stimuli are present and there are no noise 
effects. However, it is unreasonable to expect that a population of 
neurons would be isolated in this way. To that end, we conducted two 
additional simulations in successively more realistic environments.

poiSSon Model CoMpariSon: Modeling the baCkground aS 
noiSe
In the first test, we constructed a more complete spike data set by 
embedding those spikes in a “noise bath” of background neural spik-
ing. The idea of noise here is as a model for any other ongoing pro-
cessing. For each neuron, the probability of firing at each millisecond 
was set to 0.008, representing approximately 10 Hz background rate, 
and the model’s spikes were added to this bath. For comparison, we 
compared these spike trains to a pure noise bath with firing prob-
ability of 0.01. The different background rates were chosen so that 
the number of spikes in each case was approximately the same. The 
results are shown in Figure 6. The black curve shows the cumulative 
distribution of the spike train for the spikes that use random routing 
plotted against the cumulative distribution for white noise spikes. By 
way of comparison, the red curve shows the distribution of spikes in 
a case where random routing is not used and one set of coefficients 
is simply repeated, plotted against the cumulative node distribution. 
It is easily seen that the random routing necessitated by the learning 
algorithm obscures the timing signal. With the random routing, no 
timing perturbation is noticeable even after 40 s of simulation. In 
contrast, without the random routing constraint, the effect of the g 
latency code clearly shows up in the plot as a step change, representing 
the influence of the highly detectable 50 Hz signal.

poiSSon Model CoMpariSon: Spike interval hiStograMS of 
Multiple g proCeSSeS
The test shown in Figure 6 provides an additional indication that the 
g latency code can appear similar to a random spike code but at the 
same time there are more exacting tests than the cumulative distri-
bution comparison. Also, the overcompleteness measure of 2.56 is 
not very representative of the cortex, which uses overcompleteness 
measures greater than 10. To attempt to approximate this larger 
overcompleteness ratio, we resorted to using copies of the learned 
basis functions in a more exacting test. Basis sets of 512 (×2) and 768 
(×3) were constructed by replicating the original learned set. With 
a larger set, the spike rates for individual cells decrease, so that, to 
bring the rates up to biologically observed levels, multiple different 
patch codings were used. For the case of the ×2 set 12 patches were 
coded, and for the case of the ×3 set, 18 patches were coded. Note 
that this is possible owing to the enormous economies introduced 
by the g latency code which uses sparseness to ameliorate cross-talk. 
In addition, per (Diesmann et al., 1999), a baseline noise rate of 2 Hz 
was added to each spike train.

An issue that has been finessed up to this point is that g frequen-
cies appear in a range of 30–80 Hz. Thus per (Ray and Maunsell, 
2010), for the proposed strategy to work, the latency code has to 
be sensitive to the particular frequency chosen. As a consequence, 

one fitting iteration to the next, i.e., the circuit is assumed to be 
memoryless. However, by adapting the method of (Druckmann 
and Chklovskii, 2010), memory could be added.

The simulation uses 256 neurons and shows the spikes for each 
of 200 g cycles, representing 4 s of elapsed time (200 × 20 ms). 
Each colored dot represents a spike for a particular neuron and in 
each column 12 such spikes are present, 1 from each of 12 neu-
rons selected. The spikes are color-coded to indicate their g latency 
values, with light yellow to white being the highest value and dark 
red being the lowest. The colored scale bar indicates the values of 
the coefficients prior to latency conversion. Neurons that are used 
frequently have high coefficient values.

The 10 inset images in a row at the top of this figure are recon-
structed from the sum of products of the 12 coefficients at cycles 
{20, 40, 60, 80, 100, 120, 140, 160, 180, 200} and these images show 
a high degree of invariance despite the fact that the basis functions 
used in encoding the patch are different. For example, comparing 
the basis functions for cycles 60 and 120 (shown on the extreme 
right hand side) shows that the neurons used to represent the patch 
are almost entirely different. This can be checked visually by picking 
a receptive field for the 60 ms patch encoding and trying to find its 
counterpart in the 120 ms patch encoding and vice versa.

One direct consequence of the probabilistic spike selection 
strategy is that if the individual neurons are examined, their spike 
“rate” is correlated with their average response coefficients. Here 
we use “latency code” as a synonym for “response” since a recipi-
ent neuron can decode the latencies to recover the responses. To 
demonstrate this feature, Figure 5 plots, for each neuron, the sum 
of its responses (coded as latencies) against the number of times it 
was chosen. This rate-latency code correlation is one reason why it 
could be difficult to appreciate a latency code as the basis for neural 

Figure 3 | The orientation tuning of the g latency code shows the 
classical bell-shape tuning. The histogram of two 8 × 8 receptive fields 
learned by the algorithm tested with a rotated set of Gabor patches 10° apart. 
Each histogram records, for 1200 presentations at each tested orientation, the 
number of times the neuron was randomly selected by the algorithm. By way 
of comparison, in a conventional model the y-axis would record the match 
between the input and the receptive field. The two peaks for each neuron 
result from the fact that the Gabor patch is self similar every 180°.
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it could be assumed that multiple encodings are using different 
frequencies. Therefore, for the different simultaneous encodings, 
it is assumed that they each can use a different frequency in the g 
range, and this is modeled by choosing random frequencies with 
wavelengths in the range [20 ± (no. patches)/2]. In addition an initial 
phase offset for each coding in the range [0, 20] is chosen. Finally, 
the appropriate latency for each neuron’s coefficient is added as an 
offset to its g reference.

Figure 7 shows the comparison of g latency encodings with one 
set of random spike trains (Figure 7A) whose level of randomness has 
been adjusted to make the total spikes similar to those in the g latency 
spike trains. All the comparisons use 1 ms resolution. The simulations 
lasted for 4 s, or approximately 200 g intervals. We assume that the 
different patch encodings are not confused, since they use different 
phases and offsets and the spike trains are very sparse. For each graph, 
five different runs are made and the data combined in a interval 
histogram plot with the standard error in the mean at each sample 
denoted by color. Figure 7B shows that for the overcompleteness 

Figure 4 | responses of 256 model neurons when re-coding a single 
10 × 10 image patch repeatedly for 200 g cycles. (Top) Invariant encoding. The 
reconstruction of the input patch for cycles 20, 40, 60, 80, 120, 140, 160, 180, 
and 200. At each update cycle, the reconstruction of the image input patch 
changes slightly but is for the most part invariant. (Center) Individual spikes 
communicate numerical values by virtue of their latency relationship to a g 
phase. Owing to the probabilistic nature of cell selection, at each cycle, different 

neurons are selected and send a spike. The latency of each spike is denoted by a 
color that encodes its scalar coefficient. The highest values are light yellow to 
white and lowest values are dark red. These values are translated into 
milliseconds using the latency formula in Eq. 2. (Right) Basis functions for two 
coding cycles Cycles 60 (1200 ms) and 120 (2400 ms) are representative 
examples showing that the sets of 12 neurons sending spikes vary from update 
to update.

Figure 5 | The sum of the latencies sent by the neurons is correlated 
with their spike rate.
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1. Large scale computation It specifies a way of organizing com-
putations that span different areas throughout the cortex that 
is impervious to other ongoing computations. The neurons 
that are tied to a specific g frequency can communicate with 
each other easily. Cross-talk with other action potentials is 
minimal owing to the sparseness of the representations and 
the different g frequencies. Potentially, a given neuron can par-
ticipate in several different computations, each one specified 
by a particular g frequency.

2. Generic signal representation It is generic in that the signal 
representation can suffice for any analog quantity, so that dif-
ferent algorithms that the cortex might use can be interfaced 
without any difficulty.

3. STDP compatibility The use of the latency code by the lear-
ning algorithm is of significant interest since it exploits pre-
cisely the timing feature used in STDP (Bi and Poo, 1998). 
Found in the hippocampus, the learning time constants are 
about three times longer than needed to support learning in 
our model, where changes are communicated within 5 ms 
windows, but it may turn out that STDP is faster in the cortex. 
Certainly to take full advantage of g latency coding it needs 
to be. In such a coding the modulation of learning in models 
such as ours scales the magnitude of the effects in precisely the 
way signaled by the delay code.

4. Poisson-like statistics It can reproduce the Poisson-like stati-
stics that are the hallmark of rate-code models. From this per-
spective, the post-stimulus histogram is useful as a correlate of 
the putative g latency code.

However the g latency code is not without challenges. It is signifi-
cantly more technically demanding to implement than the standard 
rate code and the following issues need to be addressed in future 
work that would use a more detailed neural model.

1. Precision How much precision can one expect in the action 
potential? Our model assumes that the action potential peak 
is the key indicator. Given a 5- to -10 ms latency window, four 
bits of precision would require the ability for the recipient 
neuron to discriminate peaks that are as small as 0.25–0.5 ms 
apart. This would seem very demanding. However, an ame-
liorating factor is that since just the receptive field response 
is to be estimated and this estimate appears as the form of a 
weighted average, an additional three bits of information may 
be possible by the action of accumulating charge at the soma.

2. Spike Random selection and communication We do not spe-
cify exactly how the spikes are generated, and to do this places 
demands on the neuron. There has to be a mechanism that 
translates the differences in potential into a probability, and, at 
the same time, uses this information in the coding of latency. 
In addition, once selected, the neuron has to communicate 
its value rapidly to the other neurons in the pool. Our basic 
assumption is that the size of the pool has to be less than the 
axonal branching factor which is usually assumed to be on the 
order of 104.

3. Sequentiality The associated matching pursuit learning algo-
rithm has an inherent sequentiality that is demanding to 
model, however our simulations assume that this sequentia-
lity can be integrated into the generation of the g phase codes. 

ratio of 7.68, the interval histogram is very similar to that observed 
in purely random spike data. Similarly for the overcompleteness ratio 
of 5.12, the histogram is very similar to the random plot. However, 
when the ratio is reduced to 5.12, and the g range is also restricted 
to 50 ± 1 Hz, the effects of g timing clearly can be seen; however, one 
must appreciate that this test is severe, as the encodings are designed 
to be similar, 512 cells are used, and the measurement interval is 4 s. 
Furthermore, experimental measurements of larger numbers of cells 
using local field potentials regularly show a g signal.

teStable hypotheSiS
Figure 8 shows an essential feature that would distinguish the 
model from a standard Poisson model. If the same image patch 
is used repeatedly, then any given neuron will have, on average, 
a discrete set of coefficients that it signals, owing to the discrete 
nature of the signaling pool of cells. Thus, if a histogram is made of 
these coefficients for each cell, as is shown in the figure, the entries 
will not be uniform, as expected if the process were Poisson, but 
instead will exhibit the asymmetries shown, where certain latencies 
are used much more frequently than others.

4 diSCuSSion and ConCluSionS
Our primary hypothesis is that the rate code observed in so many 
experiments might be an abstraction of a more fundamental and 
efficient latency code that uses frequencies in the g range as timing 
references but can generate rate-like statistics when tested by con-
ventional means. This stands in contrast to models that posit that 
rate codes and g frequency codes are separate and compatible (e.g., 
Masuda and Aihara, 2003). The particular g latency code model 
tested in simulation here combines both probabilistic selection and 
multiplexing and has several important features.

Figure 6 | Spike interval histograms were computed for both the pure noise 
bath and the noise bath with the code embedded in it under two conditions. 
In one random routing was used to select the coefficients, and in the other the 
same coefficients were re-sent at each coding cycle. Next the cumulative density 
functions (cdfs) of these two cases (vertical axis) were plotted against the cdf for a 
pure noise bath of the same number of spikes (horizontal axis). Note that if two 
cdfs were identical the result would be a straight line. The g timing signal clearly 
shows up using the cdf for the case where the same coefficients are used at 
every cycle (red curve) vs. the random cdf. In contrast, the random routing cdf vs. 
the random cdf tends to obscure the g signal completely (black curve).
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Figure 7 | interval histograms. (A) Spikes chosen randomly with a 
probability that equalizes the total number of spikes used in the g latency 
coding. (B) 256 × 3 basis functions used to code 18 image patches (see text). 
(C) 256 × 2 basis functions used to code 12 image patches. (D) 256 × 2 basis 

functions. When the g signal is restricted to a small range (50 ± 1 Hz), it can 
be clearly seen. For each data set spike interval histograms are computed at 
1 ms resolution. The color is used to indicate the SE of the mean value for 
five runs.

Figure 8 | For each basis function the scaled and quantized histogram 
of latencies is plotted where the number of coefficients of a given 
latency range is represented by a gray scale with the scale calibration on 
the rHS. This example shows, contrary to a Poisson expectation, that the 
distribution is very non-uniform.

This process is technically demanding: the largest component 
must remove its components so that they are not party to the 
choice of larger g latencies representing smaller magnitudes. 
In that way, all the component neurons can be found in one g 
cycle. This is possible as the axonal propagation speeds in mye-
linated sensory neurons are on the order of 5∼25 m/s. Another 
option is that, as long as neurons with substantial overlap can 
compete, the process can be conducted in parallel. The conse-
quence is that the result can be off by a scale factor, but there 
maybe ways of fixing this result. Future work will address 
this option.

4. Decoding Another challenge for g latency coding is that 
of decoding. Consider the task a recipient neuron faces in 
recognizing a coded image patch. The code can be reali-
zed in many different ways as shown in Figure 4. However 
a straightforward way of decoding would be to connect the 
appropriate basis functions’ axons to the decoding neuron’s 
dendritic tree. Given that the recipient neuron can have on 
the order of 10,000 synapses and on the order of 10 basis 
functions are used per code, ideally 103 slots would be avai-
lable. To reduce cross-talk, it may be possible to organize all 
the connections for any given code on the same branch of the 
dendritic tree.

Ballard and Jehee Dual roles for spike signaling

Frontiers in Computational Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 22 | 8

http://www.frontiersin.org/Computational_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


referenCeS
Atick, J. J. (1992). Could information 

theory provide an ecological theory 
of sensory processing? Network 3, 
213–251.

Attwell, D., and Laughlin, S. B. (2001). 
An energy budget for signaling in the 
grey matter of the brain. J. Cereb. Blood 
Flow Metab. 10, 1133–1145.

Averbeck, B. B., Latham, P. E., and Pouget, 
A. (2006). Neural correlations, popu-
lation coding and computation. Nat. 
Rev. Neuroci. 7, 358–366.

Bell, A. J., and Sejnowski, T. J. (2003). The 
“independent components” of natural 

scenes are edge filters. Vision Res. 37, 
327–338.

Bi, G., and Poo, M. (1998). Synaptic modi-
fications in cultured hippocampal 
neurons: dependence on spike timing, 
synaptic strength, and postsynaptic 
cell type. J. Neurosci. 18, 10464–10472.

Bonomano, D. V., and Merzenich, M. M. 
(1998). Cortical plasticity: from syn-
apses to maps. Annu. Rev. Neurosci. 
21, 149–186.

Burns, S. P., Xing, D., Shelley, M. J., and 
Shapley, Robert, M. (2010). Searching 
for autocoherence in the cortical net-
work with a time-frequency analysis 

of the local field potential. J. Neurosci. 
30, 4033–4047.

Buzsáki, G., and Chrobak, J. I. (1995). 
Temporal structure in spatially organ-
ized neuronal ensembles: a role for 
interneuronal networks. Curr. Opin. 
Neurobiol. 5, 504–510.

Chen, Y., Geisler, W. S., and Seidemann, 
E. (2006). Optimal decoding of cor-
related neural population responses 
in the primate visual cortex. Nat. 
Neurosci. 9, 1412–1420.

Crapse, T. B., and Sommer, M. A. (2009). 
Frontal eye field neurons with spatial 
representations predicted by their 

subcortical input. J. Neurosci. 29, 
5308–5318.

Delorme, A., Perrinet, L., and Thorpe, S. 
(2001). Networks of integrate-and-
fire neurons using rank order coding 
b: spike timing dependent plastic-
ity and emergence of orientation 
selectivity. Neurocomputing 38–40, 
539–545.

Dempster, A. P., Laird, N. M., and Rubin, 
D. B. (1977). Maximum likelihood 
from incomplete data via the em 
algorithm. J. R. Stat. Soc. B 39, 1–38.

Diesmann, M., Gewaltig, M. -O., and 
Aertsen, A. (1999). Stable  propagation 

performing just one large computation at a time, so that all the 
participant neurons implicitly reference that computation and no 
further bookkeeping is necessary. Nonetheless, a way to segregate 
different neural computations in cortex would add enormously 
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the rate-code model in interpreting cortical experimental data may 
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to a first approximation, a recipient neuron is faced with counting 
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5. Phase locking A final implementation issue for the underlying 
biology is to realize different frequencies in the g range. We 
envision that the lower levels in the cortical mantle can do this 
and that the result is somehow mapped onto the pyramidal 
circuitry that is doing the main processing and thus cells in a 
large network can be quickly synchronized. Other studies have 
suggested ways of doing this.

When phase locked, the g latencies may be difficult to detect. 
We envision that the temporal usefulness of a particular set of g 
latencies might be as little as 300 ms, the typical time used to acquire 
information with a saccade and commensurate with the times used 
in visual routines (Roelfsema et al., 2003). Furthermore it may be 
possible that many simultaneous such routines could coexist, each 
using a g signal with a different global phase. Both of these pos-
sibilities, together with the random routing constraint, combine to 
make the detection of the g latencies a difficult problem as noted 
by (Burns et al., 2010).

The increasing number of experiments that have confirmed the 
general presence of the g signal has led to many suggestions as to 
its role. The g signal has been suggested as the basis for a number 
of effects such as attention (Womelsdorf and Fries, 2006), feature 
binding (Singer and Gray, 1995), and even consciousness (Engel 
et al., 1999), but we suggest it is a generic method of signaling 
quantitative information. To make this distinction clear, consider 
the report that shows g band activity is correlated with change 
detection (Womelsdorf et al., 2006). This can be interpreted as a 
sign that neural activity was initially uncorrelated and subsequently 
became more synchronous. However, an alternate interpretation is 
that the underlying process that was dedicated to monitoring the 
experimental condition used a particular phase reference. In other 
words, zero phase has to be set to a particular time for this specific 
problem, so that the latencies signaling numerical quantities are 
coded with respect to this reference. So our alternate interpreta-
tion is that, as the network solves the experimental signal detection 
problem, ever more neurons are recruited to that phase reference 
or possibly more signaled values are large and at very small phase 
lags. In either case, the clocked phase was always present but in the 
latter case the number of basis functions is just increased, making 
the g signal more readily detectable.

The number of independent computations that are possible 
in the cortex is an open question that the g signal may also shed 
light on. It might still be possible that the cortex is capable of 
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Matching Pursuit Algorithm
To choose the N neurons that best predict a given input (i.e., neu-
rons that are active), we use a modified version of the matching 
pursuit algorithm (Mallat and Zhang, 1993). Matching pursuit uses 
the least number of basis vectors or equivalently the least number of 
active V1 neurons to accurately predict its input. In a deterministic 
version of the algorithm, the first vector is chosen as the vector ui1

 
that minimizes

 
∆I I u1 1 1

= − ri i  
(7)

at the next time step, an additional vector is chosen that minimizes

 
∆ ∆I I I u2 1 2 2

= − − ri i  
(8)

and so on, where the response rik
 of the vectors is given by

 
ri k ik k

= ⋅−∆I u1  
(9)

Probabilistic Version
This deterministic version was modified in order for the learning 
algorithm to be optimal in terms of sparseness (Jehee et al., 2006). 
Thus, after learning not only do the V1 units make more accurate 
predictions, but also fewer of them participate in any given predic-
tion. The modification is very simple: at each time step, a V1 unit 
is selected randomly from the distribution

 

Pr i j e

Z
k k j k

j k( | ) ( )= = ⋅− −
⋅ −∆ Θ ∆ ∆

I u I
u I

1 1
1β

 

(10)

where i
k
 is the index of the selected unit in the k-th iteration, u

j
 is 

the basis vector associated with the jth unit, Θ(x) is the Heaviside 
function, b−1 = 1/10 is a temperature parameter and Z is a normal-
izing term.

In the modified model, the probability with which a unit is 
selected increases when its receptive field structure better pre-
dicts the lower level input. To guarantee optimality, the response 
of a selected unit rik

 should be drawn from a normal distribution 
N I uk ik

( , )a s∆ − ⋅1
2  with small variance (Jehee et al., 2006), but the 

effect of this process is negligible so that in practice the response 
of a neuron in the modified model is given by Eq. 7. The selected 
basis vector weighted by its neuronal response is then subtracted 
from the input.

The feedforward–feedback cycle is then repeated on the resid-
ual input so that after k iterations the residual input is given by

 
∆I I uk

l

k

i ir
l l

= −
−
∑

1  
(11)

In words, the number of active V1 neurons increases at each 
time step in the model, and their combined prediction is subtracted 
from the actual input. We assume model V1 responses to be stable 
and non-decaying over the considered time scales.

Learning Receptive Fields
To enhance the sparseness of the neural code and better capture 
the input statistics, basis vectors are updated in each feedforward–
feedback cycle. This is done by minimizing the description length 
of the joint distribution of inputs and neural responses (Jehee et al., 

appendix
a: the CoSt of preCiSion in a rate Coding Model
Assume that a temporal interval can be adjusted so that in a 
Poisson model, the probabilities of having zero or one spike 
dominate the probability of having more than one spike. In that 
case, an estimate of the probability of an input rate f can be made 
by counting spikes. Where the input is a probabilistic variable 
Z that can be zero or one and has P(Z = 1) = f, the estimate, f̂ 
is given by

 
f̂ = ∑1

m
Zi

i

m

where m is the number of intervals. A straightforward application 
of the Hoeffding inequality shows that for a precision d f f= −

∧
| | 

known with confidence C, the number of inputs required – and 
consequently synapses – is given by

 1 2 2

− ≤ −C e md

To just get within 10 with 95% confidence requires about 150 
synapses. So for 100 independent inputs the total synaptic budget 
necessary would be 150 synapses per input ×100 inputs, or 15,000 
synapses total. In contrast, if the latency code has 10 discernable 
levels the total number of inputs required would be just 100.

b: the algorithM for learning reCeptive fieldS
The learning algorithm is a fast algorithm for fitting learned recep-
tive fields to input data based on matching pursuit (Mallat and 
Zhang, 1993). Here we briefly describe model equations and param-
eters. The interested reader is referred to (Jehee et al., 2006; Jehee 
and Ballard, 2009).

Initial Filtering
The input is obtained from 768 by 768 black-and-white images 
of natural surroundings (Figure 1A), filtered with a zero phase 
whitening/lowpass filter (Atick, 1992; Olshausen and Field, 1996):

 
 I exp f Ix y x yfiltered v v v v v v, / ,( ) = −( ) ( )0

4

 
(5)

where the tilde represents the Fourier transform in 2D, and 
f
0
 = 300 cycles/image.

We limit this input into the model to a 10 by 10 (100)  “patch” 
that is randomly selected from the filtered image, and represented 
as a single vector.

The model, which would correspond to an orientation column 
in cortical area V1, is represented by 256 units. In the language of 
the model, the synaptic weights between its un-oriented input and 
oriented V1 units form basis vectors that represent the preferred 
stimulus of the model oriented V1 neurons. These cells predict its 
layer IV input I as a linear combination of N active basis vectors, 
where the weighting coefficient of each basis vector u

i
 is given by 

the response r
i
 of its corresponding V1 neuron:

 
I u= +

=
∑
i

N

i ir n
1  

(6)

in which n is a stochastic noise process.
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process each image patch using four feedforward–feedback cycles 
during training. Parameter values are kept constant throughout 
all simulations.

Latency Code
The response of a neuron encodes an analog value in terms of 
a latency with respect to the phase of a g signal. The particular 
formula used is given by

 al r= − log

where l is the latency value in milliseconds. In the learning recep-
tive fields, the analog value is used. For the spike code analyses, 
such as the spike interval histograms, the analog value for the 
coefficient is converted to a latency in milliseconds, rounding to 
intervals of 1 ms.

2006), but the same learning rule can also be obtained from the 
gradient of the error function for the k-th feedforward–feedback 
cycle (Jehee et al., 2006):

 
∆ ∆u Ii i kk k

r= < >−h 1  
(12)

where h = 0.3/(1 + m) is the learning rate, in which m is initially 
equal to 1 and increases by 1 every 1000 image patches. V1 basis 
vectors are normalized, and initialized using 128 random values 
with zero mean: positive values are taken as the initial values of the 
entries coding for on-type inputs, negative values are rectified and 
taken as the initial values of the off-type entries of the basis vector, 
the remaining 128 entries are initialized with value zero. Initializing 
all 256 entries of the basis vector with random values gives simi-
lar results. The basis vectors are trained on 10,000 image patches 
extracted from 16 natural scenes, and the model was allowed to 
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